

Clustering in the Belle II ECL using Graph Neural Networks

Jonas Eppelt, Torben Ferber | 28.September 2024

www.kit.edu

Exemplary B-event

2/19 28.,9.2024

Goals

- I want to identify localized depositions and group them together (clustering).
- I want to identify these depositions, that come from particles created in the collision.
- I want to remove as many clusters created by beam background as possible.

Challenges from beam background

Challenge of neutral hadrons

Challenge of charged hadrons

Challenge of traces from minimal ionizing particles ("MIP-Worms")

ELL crystals multiple LMs (= (lusters) for one particle TOP CDC Wall low momentum, trace of minimal ionizing particle depositions (e.g. µ[±], π[±]) J $\rightarrow \rho$

Challenge of pair conversions before the ECL

Tackling beam background and MIP traces

- What are energy depositions from signal particles and which come from beam background?
 → If there is no MCParticle matched to a Local Maximum (LM), it is marked as background.
- If a particle has multiple Local Maxima, which is the correct one?

 \rightarrow Match every MCParticle, to the Local Maximum (LM) in which it deposited the most energy.

Tackling hadronic split-offs and pair-conversion

- Basf2 does not store information about the split-off particles from hadronic interactions.
 Instead, split-offs are attributed to their parent particle.
- I use a custom matching scheme, that:
 - keeps particles created before the ECL or,
 - particles that traveled at least 40 cm in the ECL.
- In both cases, the particles also need to have at least 20 MeV kinetic energy.

Examplary B event with MC information

ETP

Definition of target classes

- beam background LMs: The LM is not matched to any MCParticle and $\frac{E_{\rm MC}^{\rm dep}}{E_{\rm measured}} < 75\%.$
- fake background LMs

The LM is not matched to any MCParticle and $\frac{E_{\rm MC}^{\rm dep}}{E_{\rm measured}} > 75\%.$

electromagnetic LMs

The LM is matched to a photon, electron or positron.

hadronic LMs

The LM is matched to any hadronic MCParticle.

muonic LMs

The LM is matched to a muon.

Examplary B-event with target LMs

ETP

The Seedclassifier model

- Message passing blocks collect information about the neighborhood.
- A Focal Loss (weighted cross-entropy) accounts for a large imbalance towards background samples.
- The training is done on Particle Gun events enriched with low energetic particles.

Seed classifier results - beam background identification

Seed classifier results - confusion matrix

- Every LM, that has a beam background prediction value > 0.95, is assigned as such.
- All other I Ms are assigned the most likely class (except beam background).

.0 4 frac of LMs in a certain

იი

Comparison to a Timing Cut

- Every LM, that has less then 20 MeV or whose timing is below 200 n is labeled beam background.
- This selection can be implemented in the next run (see Torben's talk).

Seed classifier results - exemplary B-event

Summary and outlook

Summary

- Using GNNs, we can reduce the number of beam background LMs.
- Further, we can identify electromagnetic LMs.

Outlook

- Seperating hadrons and muons is more challenging. I plan to use different training targets: minimal ionizing particle and other hadrons.
- Using these labels, I plan to build clusters from them.