
MVA HIT-BACKGROUND FILTERS IN
CDC

Yulan Fan, Alexander Glazov, Christian Wessel

1st Oct, 2024 @ Belle II Germany Meeting

2

Motivation

An example of event display in CDC

total

Sizable amount of hits-off-tracks &
different correlation patterns
for hits on tracks and hits off tracks
for ADC, TOT and TDC,
MVA can be used to distinguish them

charge

ADC =

Time over threshold (TOT)

3

Motivation Database(DB) as reference:
 ADC>=15, TOT>=2, ADC/TOT>=3 (Inner super layers)
 ADC>=18, TOT>=2, ADC/TOT>=3 (Outer super layers)

Strategy

Introduce a MVA to suppress background hits, especially in the low and upper limits of ADC

> Training a MVA
 >> Training on raw data, using hits on tracks as signal and hits off tracks as background
 >> exclude the asic background

> Track finding efficiency

> Time consumption of related-modules

4

MVA: training preparation and performance

5

All :
ADC>=1, TOT>=1, ADC/TOT>=0
(payload generated in
 wireHitRequirement)

Training Variables:
ADC, TOT, TDC and
inner/outer super layer

Hyper-parameter:
optimized with Optuna

Training sample:
1.2 million exp26 raw data

https://gitlab.desy.de/belle2/software/basf2/-/blob/main/cdc/data/CDCWireHitRequirements_example.json?ref_type=heads

MVA: implement into basf2

else if (filterName == "mva") {

 return std::make_unique<MVACDCWireHitFilter>();}

namespace {

 using MVACDCWireHitFilter = MVAFilter<CDCWireHitVarSet>;}

bool CDCWireHitVarSet::extract(const CDCWireHit* wireHit)

{

 const auto* cdcHit = wireHit->getHit();

 var<named("adc")>() = cdcHit->getADCCount();

 var<named("tot")>() = cdcHit->getTOT();

 var<named("tdc")>() = cdcHit->getTDCCount();

 var<named(" slayer")>() = cdcHit->getISuperLayer() == 0 ? 0 : 1;

 return true;

}

Tools: write_tracking_mva_filter_payloads_to_db(

 "trackfindingcdc_FastBDT_ADCFilter_in_CDC", iov, " FastBDT_ADCFilter_in_CDC", 0.4)

Specify the parameter in WireHitPrepare module

Loop each wire-hit to get training variables

MVA payload need to be added during the reconstruction

C.W. initial_version_of_implementation

6

CDCWireHitPreparer

https://gitlab.desy.de/belle2/software/basf2/-/merge_requests/2788#ff090bb8cf5272983065f645543b09e24c51543c_12_13

MVA: compare with DB for wirehit level–adc

hits off tracks are restricted to those that did not get the background flag 7

Hits attached on a
track

Hits didn’t attached
on a track

MVA: compare with DB in wirehit level–adc, tot and tdc

8

MVA: compare with DB in track and event level

Amount of hits per track is similar,
significant reduction of hits considered for track reconstruction

9

Track-finding efficiency (vs. theta acceptance)

Efficiency remains the same 10

Efficiency is similar,
slightly better for large theta

Time consumption

XGBoost and FastBDT provide very similar track-finding efficiency. XGBoost is
easy to play and implement outside basf2 .

However, xgb consumed more than x1000 to the current DB

(ms) DB xgboost (main)

TFCDC_WireHitPrepare 3.77 +/-1.00 4543.61 +/- 1288.58

Main reason: python interface and evaluation of background flag tracking MVAExpert
Solution: https://gitlab.desy.de/belle2/software/basf2/-/merge_requests/2977 (A.G)

● Introduce a function which using pre-arranged vector of floats to calculate predictions
● Get the orders of training variables from payload

10~15 ms

Use fastBDT as default since it is faster with similar background suppression performance
11

https://gitlab.desy.de/belle2/software/basf2/-/merge_requests/2977/diffs

Time consumption

The main CDC tracking algorithms becomes
almost twice faster !

12

5-7 ms slower

10-20 ms faster

5-70 ms faster

13

Further validation in raw-data/mc

1. Di-muon data/mc
2. MC16RI exp0, 1003, 1004
3. MCRD
4. Exp30 data
5. Proton: lambda data and rimc
6. Resolution of dimu events

Cross-check with di-moun data

Standard validation: rel8 nominal background, cdc standalone

CDC standalone (%) DB hadron MVA dimu MVA MC0 MVA

finding_charge_efficiency 69.1 78.5 79.6 80.8

finding_efficiency 71.3 80.9 81.7 83.2

charge_efficiency 96.9 97.1 97.5 97.1

charge_asymmetry 2.31 1.60 0.68 0.84

fake_rate 3.39 3.52 2.88 2.93

clone_rate 0.65 0.64 0.58 0.53

hit_efficiency 80.6 82.4 81.0 85.7

Standard validation: rel8 nominal background, full tracking

Full tracking (%) DB hadron MVA dimu MVA MC0 MVA

finding_charge_efficiency 90.3 91.5 91.9 92.0

finding_efficiency 91.4 92.5 92.9 93.1

charge_efficiency 98.8 98.9 98.9 98.8

charge_asymmetry 0.37 0.34 0.07 -0.15

fake_rate 7.05 6.44 6.09 6.38

clone_rate 3.86 3.60 3.41 3.31

hit_efficiency 75.4 78.5 77.8 81.1

16

Official validation of B2bot

CDC Full-Tracking Validation Bkg

Reduction of execution time of

TFCDC_SegmentFinderFacetAutomaton
TFCDC_AxialTrackFinderLegendre
ToCDCCKF

modules in ms/event

July 11

MR:activate the cdc bkg filter

https://gitlab.desy.de/belle2/software/basf2/-/merge_requests/3413

17

BACKUP

18

Standard validation: items-explanation

● finding_efficiency = matched tracks/all primary tracks
● charge_efficiency = matched tracks with correct charge / matched primary tracks
● finding_charge_efficiency = matched tracks with correct charge / all primary tracks

● fake_rate =pattern recognition tracks that are not related to a particle / all pattern recognition tracks
● clone_rate = ratio of clones divided the number of tracks that are related to a particle (clones and matches)

● charge_asymmetry = (# matched pos - # matched neg) / all matched (pos+neg)
● hit_efficiency = hit efficiency of matched tracks

20

Hits with bgFlag vs. hits attached on a track

post-cleaning

