Track momentum scale and energy bias corrections Run 1 Data & MC

Raimundo Hoppe, Armine Rostomyan & Daniel Pitzl Hamburg, 01.10.2024

Summary of the problem

- A disparity between the reconstructed mass of particles and the PDG nominal values was found.
 - Polar angle (θ)
 Corrected

Momentum

Corrected

- → Attributed to a misestimation of the detector magnetic field
 Sample dependent (MC / Data)
- Attributed to an insufficient energy loss correction due to detector material
 Sample and Particle type dependent
- Azimuthal angle (φ)
 Not Corrected
 - Reason still unknown
 - Sample, Charge and decay topology dependent

Reference Region

• We define a reference region, where the data shows the smallest deviation and the MC doesn't show any shift

 $-0.5 < \cos(\theta) < 0.5$ & p > 0.8 GeV

• When estimating the corrections for one particle, the other one is required to be within this reference region

PDF Choice

- Many functions were tested to find the one with the best fit
- The criteria for this selection included the minimization of both, the fit reduced χ^2 (at high and low statistics regimes) and the mass peak bias
 - ➡Were the peak bias is taken as the deviation of the measured peak on MC within the reference region
- Each model includes a chebyshev polynomial to account for the nearly flat background

Models	Bias $(\Delta_{PDG} \text{ in Ref.}$ region) [MeV]	reduced χ^2	
		Reference region	Data Bin example (low statistics)
Bifurcated Gaussian	0.022	24.9	5.75
skewed TStudent + Gaussian	-0.269	4.07	4.60
Crystal Ball + Gaussian	0.004	3.36	5.71
Double Crystal Ball + Gaussian	0.038	1.22	5.49

Estimating the Corrections

- Correction payloads were developed for the $cos(\theta)$ and momentum dependent shifts.
- The corrections for both were estimated in the same manner using $D^0 \rightarrow K^{\pm}\pi^{\mp}$ events.
- Correction estimation:
 - 1. The data is separated into bins [$cos(\theta)$ or p].
 - 2. A list of 'N' guess corrections is generated around the "identity correction".
 - 3. In each bin the data is replicated 'N' times and each guess correction is applied to one of this copies.
 - 4. The mass peak position resulting from the fit in each replica is plotted against the guess correction that was used (scan plot on the right).
 - 5. A 1D polynomial is fitted to the resulting scan plot to extract the correction value corresponding to the PDG D⁰ mass for each bin.
- Due to their nature, the corrections are performed differently:

Resulting Cos(θ) Corrections

• The uncertainty of $Cos(\theta)$ corrections are at the per mil level, with them being constrained by the D⁰ Mass uncertainty

Resulting Energy Loss Corrections

(Showing only Kaon corrections)

• The uncertainty of $Cos(\theta)$ corrections are at the percent level, with them being constrained by the D⁰ Mass uncertainty

(Showing only Kaon corrections)

 $Cos(\theta)$

Momentum

Final Result

 $Q = M_{rec} - \sum M_{daughters}$

- We apply the corrections to the initial sample alongside the total up and down uncertainties in each bin. An improvement can be seen across the board
- At low momentum the kaons are undercorrected in MC

Cross Checks: $D0 \rightarrow K3\pi$

 $Cos(\theta)$

Momentum

DESY. Correction for tracking momentum and energy bias | Raimundo Hoppe, 01.10.2024

Cross Checks: J/ψ

- A subsequent cross check in the $J/\psi \rightarrow \mu^{\pm}\mu^{\mp}$ decay shows an improvement and no significant deviation
- Due to the J/ψ decay topology, the energy loss correction cannot be checked (correction is needed for particles with p<1.1 GeV)

How To access these Corrections right now

- The correction payloads are available in the conditions DB.
- They are expected to be applied **together**.
- The necessary tools to apply the corrections are in basf2 since version light-2311-nebelung
- A total of 4 payloads are going to be available
 - $\cos(\theta)$ dependent corrections:
 - Data: "tracking_MomentumScaling_Data"
 - MC: "tracking_MomentumScaling_MC"
 - Momentum dependent corrections:
 - Data: "tracking_EnergyLoss_Data"
 - MC: "tracking_EnergyLoss_MC"
- Analyzers must applying according to their needs

We plan to change this "soon" See next Slide

```
## To use the corrections before the note gets through review process
available_gt = set(["PUBLISHED", "RUNNING", "TESTING", "VALIDATED", "OPEN"])
b2.conditions.expert_settings(usable_globaltag_states = available_gt)
b2.conditions.expert_settings(connection_timeout=300, stalled_timeout=300)
## Choose the GT, payload, particle lists and SF name
gt_name = "tracking_MomentumScaleEnergyLoss_Run1_v1"
payload_name_cosTheta = "tracking_MomentumScaling"
payload_name_Eloss = "tracking_EnergyLoss"
sf_name = "central"
particle_lists = ["pi+:all"] #choose your lists
if data_type == "Data":
   payloadName_cosTheta+="_Data"
                                                       Choose between
   payloadName_Eloss +="_Data"
                                                          Data or MC
else:
                                                           payloads
   payloadName_cosTheta+="_MC"
   payloadName_Eloss +="_MC"
## scale track momenta according to SFs given in the payload
b2.conditions.prepend_globaltag(gt_name)
ma.scaleTrackMomenta(particle_lists, payloadName=payload_name_cosTheta,
   scalingFactorName=sf_name, path=my_path)
```

How To access these Corrections soon

- The basf2 module is going to apply the MC or Data payload based on the flag: "Environment::Instance().isMC()"
- Implementation just needs to be merged to main basf2 branch
- A total of 2 payloads are going to be available to analyzers
 - $\cos(\theta)$ dependent corrections:
 - "tracking_MomentumScaling"
 - Momentum dependent corrections:
 - "tracking_EnergyLoss"

```
Available SF keys:
```

```
sf_keys = ["central",
    "misalignment_down", "misalignment_up",
    "bias_corr_down", "bias_corr_up",
    "pdg_down", "pdg_up",
    "stat_down", "stat_up",
    "total_down", "total_up"]
```

```
## Choose the GT, payload, particle lists and SF name
gt_name = "tracking_MomentumScaleEnergyLoss_Run1_v1"
payload_name_cosTheta = "tracking_MomentumScaling"
payload_name_Eloss = "tracking_EnergyLoss"
sf_name = "central"
particle_lists = ["pi+:all"] #choose your lists
```

scale track momenta according to SFs given in the payload

- b2.conditions.prepend_globaltag(gt_name)

Discovery of Azimuthal angle dependent shifts in J/ψ events

- Significant ϕ modulation in terms of precision and relevance in J/ ψ sample, up to a 1.5 MeV shift
- An Empirical sine model is used to fit the data
- Parameters are amplitude and phase for negative and positive tracks

ϕ dependent shifts in $D^0{\rightarrow} K\pi$

(Showing only Kaon corrections)

- Sine wave is less prominent in $D^0 \rightarrow k\pi$ data events compared to $J/\psi \rightarrow \mu\mu$ events \rightarrow decay topology dependent
- Empirical sine model breaks for $D^0 \rightarrow k\pi$ events

Summary

- Correction Payloads are available. Currently waiting for approval on the <u>Note</u>.
- Some small mass peak shifts still remain in low momentum MC events.
- Azimuthal angle shifts are still present and their cause is unknown.
- The corrections have been validated for Release 8 using chunk 1. No problems were found (Slide on backup)

Release 8 Validation

• After applying the both corrections on the first chunk of Release 8, we see no significant mass peak shifts. with the variations falling within the corrections systematic uncertainty

Κ[±]

 π^{\pm}

Resulting Energy Loss Corrections

(Showing only Pion corrections)

• The uncertainty of $Cos(\theta)$ corrections are at the percent level, with them being constrained by the D⁰ Mass uncertainty

Misalignment

- The misalignment uncertainty is obtained by estimating the corrections in 4 different MC misalignment scenarios and taking the maximum difference between the obtained corrections.
- 10M events where produced for each misalignment scenario:
 - Prompt2Proc12
 - WiresV1
 - CharmV0
 - CharmV1

$Cos(\theta)$ corrections

DESY. Correction for tracking momentum and energy bias | Raimundo Hoppe, 01.10.2024

Momentum Corrections

ϕ dependent shifts in D⁰ \rightarrow K π (Data)

ϕ dependent shifts in D⁰ \rightarrow K π (MC)

First Approach to address ϕ dependent shifts

- Scaling the transverse momentum by a factor $P_T^{new} = P_T^{old} \cdot (1 [Fitted Sine wave])$ corrects for the observed shift
- Solving the problem like this would necessitate correction payloads dependent on the sample, charge and decay topology
- This solution would be unreasonable and would avoid the root of the problem, which is still unknown