Belle II Germany Meeting 2024 Hardware/Upgrade Session

17141

Hardware/ Upgrade Session

09:00 Near-Term Upgrade Program for the Neuro-Track-Trigger

Seminar room 3, Building 1B

Optimized Inputs for the Neuro-Track-Trigger and Principles for a Displaced Vertex-Trigger

Seminar room 3, Building 1B

Kai's Hardware Talk (3D-Hough and DVT)

^{10:00} Seminar room 3, Building 1B

CDC Hit Clean-up for Tracking

Seminar room 3, Building 1B

11:00

Object Condensation with Graph Neural Networks for the ECL Trigger - Status and Implementation Seminar room 3, Building 1B

News from the Onsen PXD readout system

Seminar room 3, Building 1B

Upgrade of the Neural Network Track Trigger for Belle II

Simon Hiesl, Christian Kiesling, Kai Unger, Sebastian Skambraks, Timo Forsthofer

3 / 18 Greta Heine - greta.heine@kit.edu 02.10.2024

Neuro Tracker

 \Box z and θ prediction by NN \rightarrow cut at z = ±15cm

features α , ϕ , t_d from (2D) Hough transform

only 1 hidden layer due to latency constraints

effect)

 \rightarrow introduce ADC cut

 \implies Reduction of noise using a cut on the ADC count

z0 reco vs z0 nnhw

3D Finder

- ³ 3D (Hough space) by adding polar angle θ (Hough plane \rightarrow Hough curve)
- IP assumption $(0,0,0) \rightarrow$ automatic suppression of tracks outside the interaction region)
- Fixed volume clustering
- 1) global maximum search on Hough space
- 2) fixed shape around maximum and saved if weights high enough
- 3) remove these cells (butterfly-shape cutout)
- 4) repeat
- \Rightarrow better z resolution than 2D Finder
- \Rightarrow higher efficiency, smaller fake rate

(a) Complete Cluster

Optimized Inputs for the Neuro-Track-Trigger and Principles for a Displaced Vertex-Trigger

Timo Forsthofer, Christian Kiesling, Kai Unger, Simon Hiesl

Extended Inputs and DNN

- use of all TS wires (axial and stereo)
- 3 hidden layers instead of $1 \rightarrow$ improve resolution \rightarrow reduce z cut to \pm 10cm for better rejection rate
- deeper NN is better than wider (working point 4x60 nodes)
- better efficiency and fake rate with ADC cut at 10
- reduced drift time resolution (-1 if missed, 1 above ADC cut, 0 below) without performance loss
- extra z output node: better background rejection at IP (+5%) with third output node trained on binary $|z_{reco}| > 1$ cm instead of "just" z-cut

For z-Cut at 15cm, Rejection Rates are 39.5% (NN24), 44.0% (DNN) and 50.6% (XI), with Efficiencies at 95.7% (NN24), 97.0% (DNN) and 98.2% (XI)

Rackground Prediction with Classification Node

Displaced Vertex Trigger

- current TRG restricted on tracks from IP
- introduce new LUT based track segment patterns
- parallel Hough transform for every vertex assumption (on 100 MacroCells)
- wrong assumptions have high maxima, but different shape
- instead of maxima calculate ratio of small radii/high radii in bitmap
- only take 5 highest scores
- add neighbours iteratively to maxima (max 5 iterations)
- store 10 cluster parameters, track curvature and 2D opening angle to DNN
 small NN with high output cut due to high BG rate

not implemented yet

3D Hough Hardware Trigger Implementation Kai Unger

- replace 2D Finder and z-vertex Track Trigger by **3D** Hough (1 µs latency)
 - more latency for Neuro Tracker/ DNN
 - better z-resolution and polar scattering angle θ
- 1) 3D Hough plane with curves from look-up tables
 - 2) maximum finding in parallel
- 3) fix point clustering (= fixed runtime)
- 4) track segment selection as DNN input (from maximum)

Displaced Vertex Trigger

- new track segment pattern to become sensitive to flat tracks (stored in LUT)
- multi Hough DVT: parallel Hough transformations for different origin hypotheses
- instead of calculating maxima, instead look at radio ratios (parts above and below thresholds)
 - I black/ white image \rightarrow count pixels \rightarrow up to 12 parallel hypotheses testing per FPGA

CDC Hit Clean-up for Tracking

Greta Heine, Torben Ferber, Lea Reuter, Slavomira Stefkova, Giacomo De Pietro

GNN based Hit clean-up with interaction network (small network type)

based on hit pattern, ADC and TDC

trained on unbiased sample mix for different backgrounds

Tracking

Evaluation on simulated $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$

best Hit Clean-up model** 191.96% +- 0.69% 192.73% +- 0.66% 12.36% +- 0.39% 10.00% +- 0.00

*track fitting metrics **current state of work, more to come, best settings: CDCWireHits, z=0 coordinates, ADC > 9, TDC > 4240, GNN cut 0.2

11 / 18 Greta Heine - greta.heine@kit.edu 02.10.2024

Tracking Modules

Preparation and Hit Cleanup RegisterEventLevelTrackingInfo TFCDC_WireHitPreparer HitCleanup

Track Finding

TFCDC ClusterPreparer TFCDC_SegmentFinderFacetAutomaton TFCDC_AxialTrackFinderLegendre TFCDC_TrackQualityAsserter TFCDC StereoHitFinder TFCDC_SegmentTrackCombiner TFCDC_TrackQualityAsserter TFCDC_TrackQualityEstimator TFCDC_TrackExporter **IPTrackTimeEstimator** CDCHitBasedT0Extraction CDCTrackingEventLevelMdstInfoFiller

Track Fitting

SetupGenfitExtrapolation FullGridChi2TrackTimeExtractor TrackFinderMCTruthRecoTracks MCRecoTracksMatcher **IPTrackTimeEstimator** Combined_DAFRecoFitter TrackCreator

time_HitClean	time_fitting	time_finding	total time	hit_efficiency	te*
	146.3 +- 166.3 ms/call	195.2 +- 52.5 ms/call	346.3 +- 154.4 ms/call		0%
179.1 +- 24.6 ms/c	1 60.2 +- 56.2 ms/call	1 21.6 +- 8.9 ms/call	1 266.6 +- 59.4 ms/call	81.72%	0%

call

Object Condensation with Graph Neural Networks for the ECL Trigger - Status and Implementation

Isabel Haide, Marc Neu, Timo Justinger, Torben Ferber

- Current ECL trigger algorithm will have difficulties with higher backgrounds \rightarrow Development of new GNN Trigger algorithm
- Object Condensation algorithm can predict clusters and their properties in one step
- Network can classify signal/background clusters on training data with high efficiency and high beam background rejection
- For optimization for hardware implementation, high reduction of free parameters and replacement of Euclidean distance with Manhattan distance necessary

 \rightarrow Performance of network stable and outperforming current trigger algorithm

Distance	LUTS	FF	BRAM	D
Euclidean	13.79%	9.24%	6.96%	30.
Manhattan	14.87%	9.18%	6.96%	1.2

- SP 64%
- 28%

- Preprocessing, interface between ICN-ETM and GNN-ETM and Belle2Link DAQ is already done
- Algorithm will store predicted clusters and their properties in raw data but will not be involved in trigger decisions
 - \Rightarrow Starting to run this in two weeks!

News from the Onsen PXD readout system

Dmytro Meleshko

- PXD data (~10x more data than rest of Belle II) stored for HLT decision
- data reduction by factor >10 by ROI selection on HLT (online) tracking)

hardware solution:

ATCA shelf with 14 slots (8 for Onsen)

xTCA carrier card carrying 4 AMC cards (Virtex-5 FPGAs)

hardware not manufactured anymore, spare parts are available but not abundant (only 1 spare carrier board)

 \Rightarrow development of new generation by M. Krein

Hardware solution

- PXD data (~10x more data than rest of Belle II) stored for HLT decision
- data reduction by factor >10 by ROI selection on HLT (online) tracking)
- hardware solution:

ATCA shelf with 14 slots (8 for Onsen)

xTCA carrier card carrying 4 AMC cards (Virtex-5 FPGAs)

- hardware not manufactured anymore, spare parts are available but not abundant (only 1 spare carrier board)
- \Rightarrow development of new generation by M. Krein

ATCA shelf

Performance

- ONSEN operation has proven overall stability in Run1, stable running in Run2 until PXD2 was switched off;
- Run 1: 300TB zero-suppressed data, TRG rate up to 8kHz (design 30kHz), peak Iuminosity 3.7 x 10^{34} cm⁻²s⁻¹, 4 carrier boards
- Run 2: x1.5 dataflow, 8 carrier boards
- occupancy far away from design limits
- event filtering by HLT, 4.41 average reduction factor in phase 3
- ROI filtering by SVD track extrapolation \rightarrow 20-30 factor (combined) suppression
- **but**, ROI selection forecast is tricky ("like Hamburg weather forecast") scale factor approximation:

 $S = S_{PXD2} \times S_{HLT} = 1.84 \times 1.86 = 3.42$

ROI selection must be enabled, when Link from ONSEN to Event Builder reaches 1000 MB/s. 2026-2027? (depends on luminosity extrapolation of SuperKEKB)

Link stability problems

- Link stability challenges have risen after LS1:
 - Not critical for operation
 - Search for solutions is ongoing
 - Observed persistently for one link only
 - several AMC swaps suggest that the issue is not on the ONSEN side
 - \rightarrow go from 6 Gbps to 3 Gbps for now
 - The upcoming hardware upgrade of the adjacent DAQ components will trigger further tests

There are two types of link problems:

- Link drops (rare, 1 per day, but crashes DAQ)
- Link errors (not fatal, but worrisome)

ONSEN-DHH Links after reset									
start: 2 end: 2 windo	2023-05-05 21:15:13 JST 023-05-06 00:43:28 JST w: 208.0 min								
	00251 ↔ H30 output 1		00252 ↔ H40 output 1		00253 ↔ H50 output 1		00254 ↔ H60 output 1		
0.050		0.050		2.0 -	<u>٦</u>	0.050			
0.025		0.025 -		15		0.025			
0.000		0.000		10		0.000			
-0.025		0.025		05		-0.025			
-0.050 1	00351 ↔ H30 output 2	0.050 1	00352 +++ H40 output 2	0.0 1	00353 ↔ H50 output 2		00354 ↔ H60 output 2		
0.050		0.050		0.050		0.050			
0.025		0.025		0.025		0.025			
0.000		0.000		0.000		0.000			
-0.025	-0	0.025		-0.025		-0.025			
	00451 ↔ H30 output 3	0.050 {	00452 ↔ H40 output 3	-0.050 1	00453 ↔ H50 output 3		00454 ↔ H60 output 3		
20 (· · · · · · · · · · · · · · · · · · ·	0.050		0.050		1 "			
15 -		0.025 -		0.025		- 4			
10 -		0.000		0.000		,			
5		0.025		-0.025					
	OUSS1 ↔ H30 Butput 4	0.050 {	00552 ↔ H40 output 4	-0.050	00553 ↔ H50 output 4	0	00554 ↔ H60 output 4		
0.050		0.050		1.00		0.050			
0.025		0.025 -		0.75		0.025			
0.000 -		0.000		0.50		0.000 -			
-0.025	-0	0.025		0.25		-0.025			
-0.050 {	01051 ↔ H10 output 1	0.050 {	01052 ++ H20 output 1	0.00	01053 ↔ H70 output 1		01054 ↔ H80 output 1		
0.050		1050		0.050		0.050			
0.025 -	1	1.025 -		0.025		0.025			
0.000		1.000		0.000		0.000			
-0.025 -		0.975 -		-0.025 -		-0.025			
-0.050	01151 ++ H10 output 2	0.950 -	01152 ++ H20 output 2	-0.050	01153 ↔ H70 output 2	-0.050	01154 ↔ H80 output 2		
0.050		0.050		0.050		0.050			
0.025		0.025 -		0.025		0.025 -			
0.000		0.000		0.000		0.000			
-0.025	-0	0.025		-0.025 -		-0.025			
-0.050 {	01251 ++ H10 output 3	0.050 {	01252 ++ H20 output 3	-0.050	01253 ++ H70 output 3		01254 ++ H80 output 3		
0.050 {		0.050		0.050	ores et investigats	7 ⁶⁰ 1			
0.025		0.025 -		0.025		40			
0.000		0.000		0.000					
-0.025	-0	0.025		-0.025		~	/		
-0.050	-01351 H10 output 4	0.050	01362 H20 output 4	-0.050	All Star HTA extend 4	0	01354 180 wtwt4		
0.050	01351 A HIO OUQUCA	10.0 f	01352 H H20 001p014	0.050	01353 H H/V BUCK	0.050			
0.025		75		0.025		0.025			
0.000		5.0		0.000		0.000			
-0.025		25-	}	-0.025		-0.025 -			
-0.050		0.0		-0.050		-0.050			
677	" the the the the star and a star	6521	and an an and an	57	" othe othe othe othe othe one of a	671	" one on one one one of the set		

Hardware/ Upgrade Session

09:00 Near-Term Upgrade Program for the Neuro-Track-Trigger

Seminar room 3, Building 1B

Optimized Inputs for the Neuro-Track-Trigger and Principles for a Displaced Vertex-Trigger

Seminar room 3, Building 1B

Kai's Hardware Talk (3D-Hough and DVT)

10:00 Seminar room 3, Building 1B

CDC Hit Clean-up for Tracking

Seminar room 3, Building 1B

11:00

Object Condensation with Graph Neural Networks for the ECL Trigger - Status and Implementation Seminar room 3, Building 1B

News from the Onsen PXD readout system

Seminar room 3, Building 1B

Thank you all for the nice discussions!

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

