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Introduction 

•  transition : FCNC transition  short distance effects are strongly suppressed in SM due to GIM mechanism. 

• FCNCs in charm sector are enhanced in various BSM scenarios  considered to be a good indicator of New Physics. 

• : Simplest decay mode to study .

c → uℓ+ℓ− ⟹

⟹

D → πℓ+ℓ− c → uℓ+ℓ−

[PDG]

BR(D+ → π+V )V BR(V → μ+μ−) BR(D+ → π+V )V→μ+μ−

ρ0(770)

ω(782)
ϕ(1020)

(8.3 ± 1.4) × 10−4

(2.8 ± 0.6) × 10−4

(5.7 ± 0.14) × 10−3

(4.55 ± 0.28) × 10−5

(7.4 ± 1.8) × 10−5

(2.85 ± 0.19) × 10−4

(3.78 ± 0.68) × 10−8

(2.1 ± 0.7) × 10−8

(1.62 ± 0.12) × 10−6

• Dominated by weak singly Cabibbo suppressed (SCS)  transition combined with an electromagnetic emission 
of the lepton pair. 

• A simple mechanism:          (with ).

D → π

D → πℓ+ℓ− ≈ D → πV( → ℓ+ℓ−) V = ρ, ω, ϕ, …
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of the lepton pair. 

• A simple mechanism:          (with ).

D → π

D → πℓ+ℓ− ≈ D → πV( → ℓ+ℓ−) V = ρ, ω, ϕ, …

• A QCD based study (to handle long 
distance effects) is desirable.              

Available estimates are based on QCDf (for ).        
[T. Feldmann, B. Müller, D. Seidel, JHEP08 (2017) 105]  

Later used for  (major focus on New Physics)        
[A. Bharucha, D. Boito, C. Méaux, JHEP 04 (2021) 158] 
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D → ρℓ+ℓ−

D → πℓ+ℓ−

• Other  channels ( ), Cabibbo favoured(CF) and doubly Cabibbo suppressed(DCS) 
are also interesting since they share long-distance dynamics (annihilation mechanism).

D(s) → Pℓ+ℓ− P = π, K, η)



Effective Operators

• The effective Hamiltonian for  (SCS)D → πℓ+ℓ−

O𝒟
1 = (ūLγμ𝒟L)(𝒟̄LγμcL)

O𝒟
2 = (ūLγμta𝒟L)(𝒟̄LγμtacL) ≪ C1,2@𝒪(mc)

Vu𝒟V*c𝒟 ≈ λ VubV*cb ≈ λ5
 suppressing factor

ℋΔS=0
eff =

4GF

2 ∑
𝒟=d,s

λ𝒟 [C1(μ)O𝒟
1 + C2(μ)O𝒟

2 ] − λb

10

∑
i=3

Ci(μ)Oi

WCs @  GeV at NNLO : μ = 1.3 C1 = 1.034,C2 = − 0.633
[Stefan de Boer, Bastian Müller, Dirk Siegel, JHEP 08 (2016)]
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𝒜(D+ → π+ℓ+ℓ−) = ( 16παemGF

2 ) λd
ūℓγμνℓ

q2
𝒜D+→π+γ*

μ (p, q)

• In the GIM limit ( ):, λb = 0, λd = − λs

Amplitude and Hadronic Matrix Element
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• In the GIM limit ( ):, λb = 0, λd = − λs

= [(p . q)qμ − q2pμ] 𝒜D+→π+γ*
𝒟 (q2)

𝒜D+→π+γ*
μ (p, q) = i∫ d4xeiq.x⟨π+(p) |T {jem

μ (x), ℋ(Δs=0,λb=0)
eff } |D+(p + q)⟩

(Due to conservation of EM current)

Amplitude and Hadronic Matrix Element
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dominated by long distance effects in 
the physical region of .q2
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ℓ < q2 < (mD − mπ)2)

The non-local invariant amplitude :
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The object of our interest



Quark Topologies for 𝒜D+→π+γ*
μ (p, q)

Loop Topology  
(Only possible in SCS decays)
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Only one (  or  flavour) contribution : No GIM cancellation.d s

A-topology is the main contribution.
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The use of  U-spin

• Combining Two approximations:   GIM limit,      and λb = 0, λd = − λs  limit,  SU(3)f l ms = mu,d

• The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

O(U=1)
1 ≡

(ūLγμsL)(d̄LγμcL)
1

2 [(ūLγμdL)(d̄LγμcL) − (ūLγμsL)(s̄LγμcL)]
(ūLγμdL)(s̄LγμcL)

=
|1, + 1⟩
− |1,0⟩
|1, − 1⟩

(Only annihilation topology)



The use of  U-spin

• As  is a U-singlet, the matrix element of interest:jem
μ

⟨P+ | jem
μ (x)O(U=1)

1 |D+⟩ Two ways to make a U-spin singlet

⟨P+
(U=1/2) | jem

μ (x)O(U=1)
1 |D+

(U=1/2)⟩ ⟨P+
(U=1) | jem

μ (x)O(U=1)
1 |D0⟩
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|π+⟩ = |ud̄ ⟩) = ( |1/2, + 1/2⟩

− |1/2, − 1/2⟩) (
|D+

s ⟩ = |cs̄⟩
|D+⟩ = |cd̄ ⟩) = ( |1/2, + 1/2⟩

− |1/2, − 1/2⟩)
|K0⟩ = |ds̄⟩

3
2 |η8⟩ − 1

2 |π0⟩ = 1
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|dd̄ − ss̄⟩

| K̄0⟩ = |sd̄ ⟩

=
|1, + 1⟩
− |1,0⟩

− |1, − 1⟩

|D0⟩ = |cū⟩ = |0,0⟩
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𝒜(D+→π+γ*)(q2) = − 𝒜(D+
s →K+γ*)(q2) = 𝒜(D+

s →π+γ*)(q2) = 𝒜(D+→K+γ*)(q2)

𝒜(D0→K̄ 0γ*)(q2) = 𝒜(D0→K 0γ*)(q2) = −
1
2

𝒜(D0→π0γ*)(q2) +
3

2
𝒜(D0→η0γ*)(q2)

𝒜(D0→η8γ*)(q2) = − 3𝒜(D0→π0γ*)(q2)

U-spin relations

𝒜(D0→η′￼γ*)(q2) = 0

: U-spin singlets.D0, η′￼

• Measuring the CF modes, e.g.  will allow to disentangle this topology.Ds → π+ℓ+ℓ−
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• Upper bounds from PDG:
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What do we know from Experiments?

• Upper bounds from PDG:

• Most recent upper bound on  : vetoing the resonance region.  [LHCb, (JHEP06 (2021) 044)](D+ → π+μ+μ−)

[PDG]



𝒜(D+→π+γ*)(q2) = ∑
V=ρ,ω,ϕ

κV fV |ADVπ |eiφV

(m2
V − q2 − imVΓtot

V )
+ ∫

∞

sh
0

ds
ρh(s)

(s − q2 − iϵ)

Can we really isolate resonances?

• The full amplitude represented via  hadronic dispersion relation :

Decay constant Amplitude for D → πV Continuum and higher 
resonances 
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Can we really isolate resonances?

• The full amplitude represented via  hadronic dispersion relation :

Decay constant Amplitude for D → πV Continuum and higher 
resonances 

As, the experimental bounds are approaching theory predictions, 
it is important to revisit it within the Standard Model.
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• The dispersion relation is valid for all values of q2

Follow from the valence quark content of V
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(Enables to relate the calculated correlation function to the sum 

over  hadronic matrix elements. ) D → πγ*

Quark Hadron Duality 
(Relates ground state hadronic matrix element in D-meson channel to the 

integral over perturbatively calculated correlation function) 

Light cone OPE 
(Computing correlation function as a product of perturbatively 

calculated Hard scattering kernel and pion DAs)

TOOLS TO DERIVE  LCSR

Borel Transformation 
(To suppress the effect of continuum and higher resonances to reduce the 

uncertainty due to duality approximation )
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The correlation function reads as:

Loop diagram from LCSR

• Both WCs (  and ) contribute in this case.C1 C2

• The contribution is small due to GIM suppression.
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• The low  region (  ), integrated branching fraction  (  2 times the QCDf 
predictions).

q2 (0.250)2 ≤ q2 ≤ (0.525)2 ∼ 5.5 × 10−9 ∼
[A. Bharucha, D. Boito, C. Méaux, JHEP 04 (2021) 158]

Uncertainties 
are yet to be 
computed
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• Work yet to be done:

• Important message for experimental analysis:

There is no way to isolate long distance effects in  decays by 
simply vetoing resonances, one need measurements of the differential decay 
rates  in the whole  region.

D(s) → Pℓ+ℓ−
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Back up!



• The method was originally suggested for .B → K*ℓ+ℓ−

• First use for charm decays in  :D → ρℓ+ℓ−

• Later, a similar method applied to  (with the main focus on new physics).D → πℓ+ℓ−

What do we already know from theory: QCD factorization?

The loop topology diagram modified to include resonances. : Shifman model of loop-resonance duality

• Open questions:

• Includes only one of the four annihilation diagrams (emission from the initial d-quark) :

✴  Other three diagrams turns out to be important.

•  corrections eg. from the use of D-meson distribution amplitudes: 
1

m2
c

✴ Expected to be large (at least compared to the B-meson case).


