Revisiting $D^+ \to \pi^+ \ell^+ \ell^-$ in SM using LCSR

Anshika Bansal

(Work in progress with Alexander Khodjamirian and Thomas Mannel)

30/09/2024

Talk at "BELLE II Germany Meeting 2024" @ DESY, Hamburg, Germany (30/09/2024 - 02/10/2024)

Introduction

- $c \rightarrow u\ell^+\ell^-$ transition : FCNC transition \Longrightarrow short distance effects are strongly suppressed in SM due to GIM mechanism.
- FCNCs in charm sector are enhanced in various BSM scenarios \implies considered to be a good indicator of New Physics.
- $D \to \pi \ell^+ \ell^-$: Simplest decay mode to study $c \to u \ell^+ \ell^-$.

•

- Dominated by weak singly Cabibbo suppressed (SCS) $D \rightarrow \pi$ transition combined with an electromagnetic emission of the lepton pair.
- A simple mechanism: $D \to \pi \ell^+ \ell^- \approx D \to \pi V (\to \ell^+ \ell^-)$ (with $V = \rho, \omega, \phi, ...$).

V	$BR(D^+ \to \pi^+ V)$	$BR(V \to \mu^+ \mu^-)$	$BR(D^+ \to \pi^+ V)_{V \to \mu^+ \mu^-}$]
$\rho^{0}(770)$	$(8.3 \pm 1.4) \times 10^{-4}$	$(4.55 \pm 0.28) \times 10^{-5}$	$(3.78 \pm 0.68) \times 10^{-8}$]
ω(782)	$(2.8 \pm 0.6) \times 10^{-4}$	$(7.4 \pm 1.8) \times 10^{-5}$	$(2.1 \pm 0.7) \times 10^{-8}$]
<i>φ</i> (1020)	$(5.7 \pm 0.14) \times 10^{-3}$	$(2.85 \pm 0.19) \times 10^{-4}$	$(1.62 \pm 0.12) \times 10^{-6}$	
-				

Introduction

- $c \rightarrow u\ell^+\ell^-$ transition : FCNC transition \Longrightarrow short distance effects are strongly suppressed in SM due to GIM mechanism.
- FCNCs in charm sector are enhanced in various BSM scenarios \implies considered to be a good indicator of New Physics.
- $D \to \pi \ell^+ \ell^-$: Simplest decay mode to study $c \to u \ell^+ \ell^-$.
 - Dominated by weak singly Cabibbo suppressed (SCS) $D \rightarrow \pi$ transition combined with an electromagnetic emission of the lepton pair.
 - A simple mechanism: $D \to \pi \ell^+ \ell^- \approx D \to \pi V (\to \ell^+ \ell^-)$ (with $V = \rho, \omega, \phi, ...$).

V	$BR(D^+ \to \pi^+ V)$	$BR(V \to \mu^+ \mu^-)$	$BR(D^+ \to \pi^+ V)_{V \to \mu^+ \mu^-}$	
$\rho^{0}(770)$	$(8.3 \pm 1.4) \times 10^{-4}$	$(4.55 \pm 0.28) \times 10^{-5}$	$(3.78 \pm 0.68) \times 10^{-8}$	
<i>ω</i> (782)	$(2.8 \pm 0.6) \times 10^{-4}$	$(7.4 \pm 1.8) \times 10^{-5}$	$(2.1 \pm 0.7) \times 10^{-8}$	
<i>φ</i> (1020)	$(5.7 \pm 0.14) \times 10^{-3}$	$(2.85 \pm 0.19) \times 10^{-4}$	$(1.62 \pm 0.12) \times 10^{-6}$	

• A QCD based study (to handle long distance effects) is desirable.

Available estimates are based on QCDf (for $D \rightarrow \rho \ell^+ \ell^-$). [T. Feldmann, B. Müller, D. Seidel, JHEP08 (2017) 105]

Later used for $D \rightarrow \pi \ell^+ \ell^-$ (major focus on New Physics) [A. Bharucha, D. Boito, C. Méaux, JHEP 04 (2021) 158]

Introduction

- $c \rightarrow u\ell^+\ell^-$ transition : FCNC transition \Longrightarrow short distance effects are strongly suppressed in SM due to GIM mechanism.
- FCNCs in charm sector are enhanced in various BSM scenarios \implies considered to be a good indicator of New Physics.
- $D \to \pi \ell^+ \ell^-$: Simplest decay mode to study $c \to u \ell^+ \ell^-$.
 - Dominated by weak singly Cabibbo suppressed (SCS) $D \rightarrow \pi$ transition combined with an electromagnetic emission of the lepton pair.
 - A simple mechanism: $D \to \pi \ell^+ \ell^- \approx D \to \pi V (\to \ell^+ \ell^-)$ (with $V = \rho, \omega, \phi, ...$).

V	$BR(D^+ \to \pi^+ V)$	$BR(V \to \mu^+ \mu^-)$	$BR(D^+ \to \pi^+ V)_{V \to \mu^+ \mu^-}$	
$\rho^{0}(770)$	$(8.3 \pm 1.4) \times 10^{-4}$	$(4.55 \pm 0.28) \times 10^{-5}$	$(3.78 \pm 0.68) \times 10^{-8}$	
<i>ω</i> (782)	$(2.8 \pm 0.6) \times 10^{-4}$	$(7.4 \pm 1.8) \times 10^{-5}$	$(2.1 \pm 0.7) \times 10^{-8}$	
<i>φ</i> (1020)	$(5.7 \pm 0.14) \times 10^{-3}$	$(2.85 \pm 0.19) \times 10^{-4}$	$(1.62 \pm 0.12) \times 10^{-6}$	

• A QCD based study (to handle long distance effects) is desirable.

Available estimates are based on QCDf (for $D \rightarrow \rho \ell^+ \ell^-$). [T. Feldmann, B. Müller, D. Seidel, JHEP08 (2017) 105]

Later used for $D \rightarrow \pi \ell^+ \ell^-$ (major focus on New Physics) [A. Bharucha, D. Boito, C. Méaux, JHEP 04 (2021) 158]

• Other $D_{(s)} \to P\ell^+\ell^-$ channels $(P = \pi, K, \eta)$, Cabibbo favoured(CF) and doubly Cabibbo suppressed(DCS) are also interesting since they share long-distance dynamics (annihilation mechanism).

Effective Operators

• The effective Hamiltonian for $D \to \pi \ell^+ \ell^-$ (SCS)

WCs @ $\mu = 1.3$ GeV at NNLO : $C_1 = 1.034, C_2 = -0.633$

[Stefan de Boer, Bastian Müller, Dirk Siegel, JHEP 08 (2016)]

Effective Operators

• The effective Hamiltonian for $D \to \pi \ell^+ \ell^-$ (SCS)

WCs @ $\mu = 1.3$ GeV at NNLO : $C_1 = 1.034, C_2 = -0.633$

[Stefan de Boer, Bastian Müller, Dirk Siegel, JHEP 08 (2016)]

• Hamiltonian in the GIM limit ($\lambda_b = 0, \lambda_d = -\lambda_s$):

$$\mathscr{H}_{eff}^{(\Delta_s=0,\lambda_b=0)} = \frac{4G_F}{\sqrt{2}}\lambda_d \left[C_1(O_1^d - O_1^s) + C_2(O_2^d - O_2^s) \right]$$

Effective Operators

• The effective Hamiltonian for $D \to \pi \ell^+ \ell^-$ (SCS)

WCs @ $\mu = 1.3$ GeV at NNLO : $C_1 = 1.034, C_2 = -0.633$

[Stefan de Boer, Bastian Müller, Dirk Siegel, JHEP 08 (2016)]

• Hamiltonian in the GIM limit ($\lambda_b = 0, \lambda_d = -\lambda_s$):

$$\mathscr{H}_{eff}^{(\Delta_s=0,\lambda_b=0)} = \frac{4G_F}{\sqrt{2}} \lambda_d \left[C_1 (O_1^d - O_1^s) + C_2 (O_2^d - O_2^s) \right]$$

• The largest effect beyond GIM limit ~ $\lambda_b C_9 (C_9 = -0.488)$

• In the GIM limit ($\lambda_b = 0, \lambda_d = -\lambda_s$):,

$$\mathcal{A}(D^+ \to \pi^+ \mathcal{C}^+ \mathcal{C}^-) = \left(\frac{16\pi\alpha_{em}G_F}{\sqrt{2}}\right) \lambda_d \frac{\bar{u}_{\ell} \gamma^{\mu} \nu_{\ell}}{q^2} \mathcal{A}^{D^+ \to \pi^+ \gamma^*}_{\mu}(p,q)$$

• In the GIM limit ($\lambda_b = 0, \lambda_d = -\lambda_s$):,

$$\mathcal{A}(D^{+} \to \pi^{+} \ell^{+} \ell^{-}) = \begin{pmatrix} \frac{16\pi \alpha_{em} G_{F}}{\sqrt{2}} \end{pmatrix} \lambda_{d} \frac{\bar{u}_{\ell} \gamma^{\mu} \nu_{\ell}}{q^{2}} \mathcal{A}_{\mu}^{D^{+} \to \pi^{+} \gamma^{*}}(p, q)$$
The leptonic part (hadronic matrix element)

• In the GIM limit ($\lambda_b = 0, \lambda_d = -\lambda_s$):,

In the GIM limit ($\lambda_b = 0, \lambda_d = -\lambda_s$):, $\mathscr{A}(D^+ \to \pi^+ \mathscr{C}^+ \mathscr{C}^-) = \left(\frac{16\pi\alpha_{em}G_F}{\sqrt{2}}\right) \lambda_d \frac{\bar{u}_{\ell} \gamma^{\mu} \nu_{\ell}}{q^2} \mathscr{A}^{D^+ \to \pi^+ \gamma^*}_{\mu}(p,q)$ The leptonic part The hadronic part (hadronic matrix element) $\mathscr{A}_{\mu}^{D^{+} \to \pi^{+} \gamma^{*}}(p,q) = i \left[d^{4}x e^{iq.x} \langle \pi^{+}(p) | T \left\{ j_{\mu}^{em}(x), \mathscr{H}_{eff}^{(\Delta_{s}=0,\lambda_{b}=0)} \right\} | D^{+}(p+q) \rangle \right]$ $= \left[(p \cdot q)q_{\mu} - q^{2}p_{\mu} \right] \mathscr{A}_{\mathfrak{B}}^{D^{+} \to \pi^{+}\gamma^{*}}(q^{2}) \quad \text{(Due to conservation of EM current)}$ dominated by long distance effects in The non-local invariant amplitude : the physical region of q^2 . $(4m_{\ell}^2 < q^2 < (m_D - m_{\pi})^2)$

The object of our interest

* At NLO, there will be multiple diagrams with the exchange of virtual gluons : Out of the scope of the present study.

The use of U-spin

- Combining Two approximations: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ and $SU(3)_{fl}$ limit, $m_s = m_{u,d}$
- The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

(Only annihilation topology)

$$O_1^{(U=1)} \equiv \begin{pmatrix} (\bar{u}_L \gamma_\mu s_L) (\bar{d}_L \gamma^\mu c_L) \\ \frac{1}{\sqrt{2}} \left[(\bar{u}_L \gamma_\mu d_L) (\bar{d}_L \gamma^\mu c_L) - (\bar{u}_L \gamma_\mu s_L) (\bar{s}_L \gamma^\mu c_L) \right] \\ (\bar{u}_L \gamma_\mu d_L) (\bar{s}_L \gamma^\mu c_L) \end{pmatrix} = \begin{pmatrix} |1, +1\rangle \\ -|1, 0\rangle \\ |1, -1\rangle \end{pmatrix}$$

The use of U-spin

- Combining Two approximations: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ and $SU(3)_{fl}$ limit, $m_s = m_{u,d}$
- The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

(Only annihilation topology)

$$O_1^{(U=1)} \equiv \begin{pmatrix} (\bar{u}_L \gamma_\mu s_L) (\bar{d}_L \gamma^\mu c_L) \\ \frac{1}{\sqrt{2}} \left[(\bar{u}_L \gamma_\mu d_L) (\bar{d}_L \gamma^\mu c_L) - (\bar{u}_L \gamma_\mu s_L) (\bar{s}_L \gamma^\mu c_L) \right] \\ (\bar{u}_L \gamma_\mu d_L) (\bar{s}_L \gamma^\mu c_L) \end{pmatrix} = \begin{pmatrix} |1, +1\rangle \\ -|1, 0\rangle \\ |1, -1\rangle \end{pmatrix}$$

• As
$$j_{\mu}^{em}$$
 is a U-singlet, the matrix element of interest:

$$\langle P^{+} | j_{\mu}^{em}(x) O_{1}^{(U=1)} | D^{+} \rangle \xrightarrow{\text{Two ways to make a U-spin singlet}} | D^{0} \rangle = | c\bar{u} \rangle = | 0,0 \rangle$$

$$\langle P^{+}_{(U=1/2)} | j_{\mu}^{em}(x) O_{1}^{(U=1)} | D^{+}_{(U=1/2)} \rangle \qquad \langle P^{+}_{(U=1)} | j_{\mu}^{em}(x) O_{1}^{(U=1)} | D^{0} \rangle$$

$$\begin{pmatrix} |K^{+} \rangle = | u\bar{a} \rangle \\ |\pi^{+} \rangle = | u\bar{d} \rangle \end{pmatrix} = \begin{pmatrix} |1/2, +1/2 \rangle \\ -|1/2, -1/2 \rangle \end{pmatrix} \qquad \begin{pmatrix} |D_{5}^{+} \rangle = | c\bar{s} \rangle \\ |D^{+} \rangle = | c\bar{d} \rangle \end{pmatrix} = \begin{pmatrix} |1/2, +1/2 \rangle \\ -|1/2, -1/2 \rangle \end{pmatrix} \qquad \begin{pmatrix} |D_{5}^{+} \rangle = | c\bar{s} \rangle \\ |D^{+} \rangle = | c\bar{d} \rangle \end{pmatrix} = \begin{pmatrix} |1/2, +1/2 \rangle \\ -|1/2, -1/2 \rangle \end{pmatrix} \qquad \begin{pmatrix} |X^{0} \rangle = | d\bar{s} \rangle \\ \frac{\sqrt{3}}{2} | \eta_{8} \rangle - \frac{1}{2} | \pi^{0} \rangle = \frac{1}{\sqrt{2}} | d\bar{d} - s\bar{s} \rangle \\ |\bar{K}^{0} \rangle = | s\bar{d} \rangle \end{pmatrix} = \begin{pmatrix} |1, +1 \rangle \\ -|1,0 \rangle \\ -|1,-1 \rangle \end{pmatrix}$$

The use of U-spin

- Combining Two approximations: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ and $SU(3)_{fl}$ limit, $m_s = m_{u,d}$
- The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

(Only annihilation topology)

$$O_1^{(U=1)} \equiv \begin{pmatrix} (\bar{u}_L \gamma_\mu s_L) (\bar{d}_L \gamma^\mu c_L) \\ \frac{1}{\sqrt{2}} \left[(\bar{u}_L \gamma_\mu d_L) (\bar{d}_L \gamma^\mu c_L) - (\bar{u}_L \gamma_\mu s_L) (\bar{s}_L \gamma^\mu c_L) \right] \\ (\bar{u}_L \gamma_\mu d_L) (\bar{s}_L \gamma^\mu c_L) \end{pmatrix} = \begin{pmatrix} |1, +1\rangle \\ -|1, 0\rangle \\ |1, -1\rangle \end{pmatrix}$$

• As
$$j_{\mu}^{em}$$
 is a U-singlet, the matrix element of interest:

$$\langle P^{+} | j_{\mu}^{em}(x) O_{1}^{(U=1)} | D^{+} \rangle \xrightarrow{\text{Two ways to make a U-spin singlet}} | D^{0} \rangle = | c\bar{u} \rangle = | 0,0 \rangle$$

$$\langle P^{+}_{(U=1/2)} | j_{\mu}^{em}(x) O_{1}^{(U=1)} | D^{+}_{(U=1/2)} \rangle \qquad \langle P^{+}_{(U=1)} | j_{\mu}^{em}(x) O_{1}^{(U=1)} | D^{0} \rangle$$

$$\begin{pmatrix} |K^{+} \rangle = | u\bar{s} \rangle \\ |\pi^{+} \rangle = | u\bar{d} \rangle \end{pmatrix} = \begin{pmatrix} |1/2, +1/2 \rangle \\ -|1/2, -1/2 \rangle \end{pmatrix} \qquad \begin{pmatrix} |D_{s}^{+} \rangle = | c\bar{s} \rangle \\ |D^{+} \rangle = | c\bar{d} \rangle \end{pmatrix} = \begin{pmatrix} |1/2, +1/2 \rangle \\ -|1/2, -1/2 \rangle \end{pmatrix} \qquad \begin{pmatrix} |K^{0} \rangle = | d\bar{s} \rangle \\ \frac{\sqrt{3}}{2} | \eta_{8} \rangle - \frac{1}{2} | \pi^{0} \rangle = \frac{1}{\sqrt{2}} | d\bar{d} - s\bar{s} \rangle \\ |\bar{K}^{0} \rangle = | s\bar{d} \rangle \end{pmatrix} = \begin{pmatrix} |1, +1 \rangle \\ -|1, 0 \rangle \\ -|1, -1 \rangle \end{pmatrix}$$

U-spin relations

$$\begin{aligned} \mathscr{A}^{(D^{+} \to \pi^{+} \gamma^{*})}(q^{2}) &= -\mathscr{A}^{(D_{s}^{+} \to K^{+} \gamma^{*})}(q^{2}) = \mathscr{A}^{(D_{s}^{+} \to \pi^{+} \gamma^{*})}(q^{2}) = \mathscr{A}^{(D^{+} \to K^{+} \gamma^{*})}(q^{2}) \\ \mathscr{A}^{(D^{0} \to \bar{K}^{0} \gamma^{*})}(q^{2}) &= -\frac{1}{2}\mathscr{A}^{(D^{0} \to \pi^{0} \gamma^{*})}(q^{2}) + \frac{\sqrt{3}}{2}\mathscr{A}^{(D^{0} \to \eta^{0} \gamma^{*})}(q^{2}) \\ \mathscr{A}^{(D^{0} \to \eta^{0} \gamma^{*})}(q^{2}) &= -\sqrt{3}\mathscr{A}^{(D^{0} \to \pi^{0} \gamma^{*})}(q^{2}) \end{aligned}$$

• Measuring the CF modes, e.g. $D_s \to \pi^+ \ell^+ \ell^-$ will allow to disentangle this topology.

What do we know from Experiments?

• Upper bounds from PDG:

Decay mode	Cabibbo hierarchy	BR, exp. upper limit
$D^+ \to \pi^+ \ell^+ \ell^-$	SCS	$1.1\times 10^{-6}(\ell=e)$
		$6.7 \times 10^{-8} (\ell = \mu)$
$D^+ \to K^+ \ell^+ \ell^-$	DCS	$8.5 \times 10^{-7} (\ell = e)$
		$5.4 \times 10^{-8} (\ell = \mu)$
$D^0 \to \bar{K}^0 \ell^+ \ell^-$	CF	$2.4 \times 10^{-5} (\ell = e)$
		$2.6 \times 10^{-4} (\ell = \mu)$
$D^0 \rightarrow \pi^0 \ell^+ \ell^-$	SCS	$4 \times 10^{-6} (\ell = e)$
		$1.8\times 10^{-4} (\ell=\mu)$
$D^0 \rightarrow \eta \ell^+ \ell^-$	SCS	$3 \times 10^{-6} (\ell = e)$
		$5.3 \times 10^{-4} (\ell = \mu)$
$D^0 \to \eta' \ell^+ \ell^-$	SCS	-
$D^0 \to K^0 \ell^+ \ell^-$	DCS	-
$D_s^+ \to \pi^+ \ell^+ \ell^-$	CF	$5.5 \times 10^{-6} (\ell = e)$
		$1.8\times 10^{-7} (\ell=\mu)$
$D_s^+ \to K^+ \ell^+ \ell^-$	SCS	$3.7\times 10^{-6}(\ell=e)$
		$1.4 \times 10^{-7} (\ell = \mu)$

[PDG]

What do we know from Experiments?

• Upper bounds from PDG:

Decay mode	Cabibbo hierarchy	BR, exp. upper limit
$D^+ \to \pi^+ \ell^+ \ell^-$	SCS	$1.1 \times 10^{-6} (\ell = e)$
		$6.7 \times 10^{-8} (\ell = \mu)$
$D^+ \to K^+ \ell^+ \ell^-$	DCS	$8.5 \times 10^{-7} (\ell = e)$
		$5.4 \times 10^{-8} (\ell = \mu)$
$D^0 \to \bar{K}^0 \ell^+ \ell^-$	CF	$2.4 \times 10^{-5} (\ell = e)$
		$2.6\times 10^{-4} (\ell=\mu)$
$D^0 \to \pi^0 \ell^+ \ell^-$	SCS	$4 \times 10^{-6} (\ell = e)$
		$1.8\times 10^{-4} (\ell=\mu)$
$D^0 \to \eta \ell^+ \ell^-$	SCS	$3 \times 10^{-6} (\ell = e)$
		$5.3\times 10^{-4} (\ell=\mu)$
$D^0 o \eta' \ell^+ \ell^-$	SCS	-
$D^0 \to K^0 \ell^+ \ell^-$	DCS	_
$D_s^+ \to \pi^+ \ell^+ \ell^-$	CF	$5.5 \times 10^{-6} (\ell = e)$
		$1.8\times 10^{-7} (\ell=\mu)$
$D_s^+ \to K^+ \ell^+ \ell^-$	SCS	$3.7 \times 10^{-6} (\ell = e)$
		$1.4 \times 10^{-7} (\ell = \mu)$

[PDG]

• Most recent upper bound on $(D^+ \rightarrow \pi^+ \mu^+ \mu^-)$: vetoing the resonance region. [LHCb, (JHEPo6 (2021) 044)]

Can we really isolate resonances?

• The full amplitude represented via hadronic dispersion relation :

Decay constant

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \sum_{V=\rho,\omega,\phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i\epsilon)}$$
Continuum and higher resonances

Can we really isolate resonances?

• The full amplitude represented via hadronic dispersion relation :

Decay constant

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \sum_{V=\rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i\epsilon)}$$
Continuum and higher resonances

- Dispersion relation tells us: vetoing a certain q^2 region does not remove resonances from the amplitude.
- The radial excitations of ρ , ω , ϕ and the "tail" at $s > (m_D m_{\pi})^2$ are indispensable.

Can we really isolate resonances?

• The full amplitude represented via hadronic dispersion relation :

Decay constant

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \sum_{V=\rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i\epsilon)}$$
Continuum and higher resonances

- Dispersion relation tells us: vetoing a certain q^2 region does not remove resonances from the amplitude.
- The radial excitations of ρ , ω , ϕ and the "tail" at $s > (m_D m_{\pi})^2$ are indispensable.

As, the experimental bounds are approaching theory predictions, it is important to revisit it within the Standard Model.

,

• LCSR can provide estimates only in the spacelike region.

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$\mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q_0^2) + (q^2 - q_0^2) \Big[\sum_{V = \rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \Big]$$

,

$$|A_{DV\pi}| = \left(\frac{8\pi BR(D^+ \to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}}\right)^{1/2}$$

 $k_{\rho} = 1/\sqrt{2}, k_{\omega} = 1/(3\sqrt{2}), k_{\phi} = -1/3$: Follow from the valence quark content of V

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$\mathcal{A}^{(D^{+} \to \pi^{+} \gamma^{*})}(q^{2}) = \mathcal{A}^{(D^{+} \to \pi^{+} \gamma^{*})}(q_{0}^{2}) + (q^{2} - q_{0}^{2}) \Big[\sum_{V = \rho, \omega, \phi} \frac{\kappa_{V} f_{V} |A_{DV\pi}| e^{i\phi_{V}}}{(m_{V}^{2} - q_{0}^{2})(m_{V}^{2} - q^{2} - im_{V} \Gamma_{V}^{tot})} + \left(\sum_{s_{0}^{h}} \frac{\rho_{h}(s)}{(s - q_{0}^{2})(s - q^{2} - i\epsilon)} \right] \Big]$$
$$|A_{DV\pi}| = \left(\frac{8\pi BR(D^{+} \to V\pi^{+})}{\tau(B)G_{F}^{2} |V_{cs}|^{2} |V_{ud}|^{2} m_{D}^{3} \lambda_{D}^{3/2} V_{\pi^{+}}} \right)^{1/2}$$

Spectral density : too complicated to be parametrized

,

 $k_{\rho} = 1/\sqrt{2}, k_{\omega} = 1/(3\sqrt{2}), k_{\phi} = -1/3$: Follow from the valence quark content of V

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q_0^2) + (q^2 - q_0^2) \left[\sum_{V = \rho, \omega, \phi} \frac{\kappa_V f_V |_A}{(m_V^2 - q_0^2)(m_V^2)} \right]$$
$$|A_{DV\pi}| = \left(\frac{8\pi BR(D^+ \to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}}\right)^{1/2}$$

 $k_{\rho} = 1/\sqrt{2}, k_{\omega} = 1/(3\sqrt{2}), k_{\phi} = -1/3$: Follow from the valence quark content of V

Spectral density : too complicated to be parametrized

$$\frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \underbrace{\begin{pmatrix} \infty \\ \infty \\ s_0^h \end{pmatrix}}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \end{bmatrix}$$
can be parametrized using **z-parametrization**
(valid below s_0^h)
for $s_0^m ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} = \sum_{k=0}^K a_k [z(q^2)]^k$
with,
 $z(q^2) = \frac{\sqrt{s_0^h - q^2} - \sqrt{s_0^h}}{\sqrt{s_0^h - q^2} + \sqrt{s_0^h}} \quad a_k = \underset{\text{coefficients}}{\text{Complex}}$

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

 $\mathcal{A}^{(}$

$$D^{+} \to \pi^{+} \gamma^{*}(q^{2}) = \mathscr{A}^{(D^{+} \to \pi^{+} \gamma^{*})}(q_{0}^{2}) + (q^{2} - q_{0}^{2}) \left[\sum_{V=\rho,\omega,\phi} \frac{1}{(m_{V}^{2} - q_{0}^{2})}\right]$$

$$|A_{DV\pi}| = \left(\frac{8\pi BR(D^+ \to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}}\right)^{1/2}$$

 $k_{\rho} = 1/\sqrt{2}, k_{\omega} = 1/(3\sqrt{2}), k_{\phi} = -1/3$: Follow from the valence quark content of V

• For K = 2, 9 unknown parameters: $\phi_{\rho}, \phi_{\omega}, \phi_{\phi}, a_0, a_1, a_2$.

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$\mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q_0^2) + (q^2 - q_0^2) \left[\sum_{V=\rho,\omega,\phi} \frac{h}{(m_V^2 - q_0^2)} \left[\sum_{V=\rho,\omega,\phi} \frac{h}{(m_V^2 - q_0^2)} \right] \right] \frac{1}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}} \right] \frac{1}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}}$$

 $k_{\rho} = 1/\sqrt{2}, k_{\omega} = 1/(3\sqrt{2}), k_{\phi} = -1/3$: Follow from the valence quark content of V

• For K = 2, 9 unknown parameters: $\phi_{\rho}, \phi_{\omega}, \phi_{\phi}, a_0, a_1, a_2$.

Main idea :

<u>Step-1</u>: Compute $\mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2)$ using Light Cone Sum Rules (valid only for $q^2 < 0$) <u>Step-2</u>: Write the hadronic dispersion relation in terms of unknown phases and z-parameters (valid for all values of q^2). <u>Step-3</u>: Match the LCSR results with the dispersion relation at $q^2 < 0$ and estimate the unknown parameters. <u>Step-4</u>: Estimate $\mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2)$ in the physical region using dispersion relation.

$$\frac{k_V J_V |A_{DV\pi}| e^{-r_V}}{q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \left(\int_{s_0^h}^{s_0^h} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \right]$$
can be parametrized using **z-parametrization**
(valid below s_0^h)
$$\int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} = \sum_{k=1}^{K} a_k [z(q^2)]^k$$

 $\int_{s_0^h} (s - q_0^2)(s - q^2 - i\epsilon) = \sum_{k=0}^{\infty} (s - q_0^2)(s - q^2 - i\epsilon)$

Spectral density : too complicated to be parametrized

1 inv

with,

$$z(q^2) = \frac{\sqrt{s_0^h - q^2} - \sqrt{s_0^h}}{\sqrt{s_0^h - q^2} + \sqrt{s_0^h}} \qquad a_k = \underset{\text{coefficients}}{\text{Complex}}$$

()

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$|A_{DV\pi}| = \left(\frac{8\pi BR(D^+ \to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}}\right)^{1/2}$$

 $k_{\rho} = 1/\sqrt{2}, k_{\omega} = 1/(3\sqrt{2}), k_{\phi} = -1/3$: Follow from the valence quark content of V

For K = 2, 9 unknown parameters: $\phi_{\rho}, \phi_{\omega}, \phi_{\phi}, a_0, a_1, a_2$. •

Main idea :

<u>Step-1</u>: Compute $\mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2)$ using Light Cone Sum Rules (valid only for $q^2 < 0$) <u>Step-2</u>: Write the hadronic dispersion relation in terms of unknown phases and z-parameters (valid for all values of q^2). <u>Step-3</u>: Match the LCSR results with the dispersion relation at $q^2 < 0$ and estimate the unknown parameters. <u>Step-4</u>: Estimate $\mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2)$ in the physical region using dispersion relation.

(Resembling partly the analysis of nonlocal effects in $B \to K^* \ell^+ \ell^-$)

[A. Khodjamirian, T. Mannel, A. Pivovarov, Y. Wang, 1211.0234]

[A. Khodjamirian, A. V. Rusov, 1703.04765], N. Gubernari, M. Rebound, D. van Dyk, J. Virto, 2011.09813

Spectral density : too complicated to be parametrized $\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q_0^2) + (q^2 - q_0^2) \Big[\sum_{V \to \infty, \phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \Big]$ can be parametrized using z-parametrization (valid below s_0^h) $\int_{s_{h}^{h}}^{\infty} ds \frac{\rho_{h}(s)}{(s-q_{0}^{2})(s-q^{2}-i\epsilon)} = \sum_{k=0}^{K} a_{k}[z(q^{2})]^{k}$ with, $z(q^2) = \frac{\sqrt{s_0^h - q^2} - \sqrt{s_0^h}}{\sqrt{s_0^h - q^2} + \sqrt{s_0^h}} \qquad a_k = \underset{\text{coefficients}}{\text{Complex}}$

TOOLS TO DERIVE LCSR

Light cone OPE (Computing correlation function as a product of perturbatively calculated Hard scattering kernel and pion DAs)

TOOLS TO DERIVE LCSR

Light cone OPE (Computing correlation function as a product of perturbatively calculated Hard scattering kernel and pion DAs)

Dispersion Relation in D-meson channel

(Enables to relate the calculated correlation function to the sum over $D \rightarrow \pi \gamma^*$ hadronic matrix elements.)

TOOLS TO DERIVE LCSR

Light cone OPE (Computing correlation function as a product of perturbatively calculated Hard scattering kernel and pion DAs)

Dispersion Relation in D-meson channel

(Enables to relate the calculated correlation function to the sum over $D \rightarrow \pi \gamma^*$ hadronic matrix elements.)

Quark Hadron Duality

(Relates ground state hadronic matrix element in D-meson channel to the integral over perturbatively calculated correlation function)

Borel Transformation

(To suppress the effect of continuum and higher resonances to reduce the uncertainty due to duality approximation)

Weak Annihilation from LCSR

* The correlation function:

$$F_{\mu}(p,q,k) = -C_{1} \int d^{4}x \, e^{iq \cdot x} \int d^{4}y \, e^{-i(p+q) \cdot y} \langle \pi^{+}(p-k) \, | \, T\{J_{\mu}^{em}(x)(\bar{u}_{L}\gamma_{\nu}d_{L})(\bar{d}_{L}\gamma^{\nu}c_{L})(0)J_{5}^{D}(y)\} \, | \, 0 \rangle$$

$$\sum_{q=u,d,c} \mathcal{Q}_{q}\bar{q}(x)\gamma_{\mu}q(x) \qquad im_{c}\bar{c}(y)\gamma_{5}d(y)$$

Only O_1^d contributes. The O_2 contribution vanishes after Fierz transformation.

<u>Diagrams in terms of pion DAs</u>

Weak Annihilation from LCSR

* The correlation function:

$$F_{\mu}(p,q,k) = -C_{1} \int d^{4}x \, e^{iq \cdot x} \int d^{4}y \, e^{-i(p+q) \cdot y} \langle \pi^{+}(p-k) \, | \, T\{J_{\mu}^{em}(x)(\bar{u}_{L}\gamma_{\nu}d_{L})(\bar{d}_{L}\gamma^{\nu}c_{L})(0)J_{5}^{D}(y)\} \, | \, 0 \rangle$$

$$\sum_{q=u,d,c} \mathcal{Q}_{q}\bar{q}(x)\gamma_{\mu}q(x) \qquad im_{c}\bar{c}(y)\gamma_{5}d(y)$$

Only O_1^d contributes. The O_2 contribution vanishes after Fierz transformation.

* The artificial momentum *k* is introduced at the four vertex to avoid parasitic contributions in the dispersion relation. (Used before in LCSR analysis of $B \rightarrow 2\pi$ and $D \rightarrow 2\pi$, $K\bar{K}$)

[A. Khodjamirian, arXiv: hep-ph/0012271]

[A. Khodjamirian, M. Melcher, B. Melic, arXiv: hep-ph/0304179, hep-ph/0509049]

[A. Khodjamirian, A. A. Petrov, arXiv: 1706.07780]

Diagrams in terms of pion DAs

Weak Annihilation from LCSR

***** The correlation function:

$$F_{\mu}(p,q,k) = -C_{1} \int d^{4}x \, e^{iq \cdot x} \int d^{4}y \, e^{-i(p+q) \cdot y} \langle \pi^{+}(p-k) \, | \, T\{J_{\mu}^{em}(x)(\bar{u}_{L}\gamma_{\nu}d_{L})(\bar{d}_{L}\gamma^{\nu}c_{L})(0)J_{5}^{D}(y)\} \, | \, 0 \rangle$$

$$\sum_{q=u,d,c} \mathcal{Q}_{q}\bar{q}(x)\gamma_{\mu}q(x) \qquad im_{c}\bar{c}(y)\gamma_{5}d(y)$$

Only O_1^d contributes. The O_2 contribution vanishes after Fierz transformation.

* The artificial momentum *k* is introduced at the four vertex to avoid parasitic contributions in the dispersion relation. (Used before in LCSR analysis of $B \rightarrow 2\pi$ and $D \rightarrow 2\pi$, $K\bar{K}$)

[A. Khodjamirian, arXiv: hep-ph/0012271]

[A. Khodjamirian, M. Melcher, B. Melic, arXiv: hep-ph/0304179, hep-ph/0509049]

[A. Khodjamirian, A. A. Petrov, arXiv: 1706.07780]

$$\mathcal{F}_{\mu}^{(L)}(p,q,k) = -\left[(p \cdot q)q_{\mu} - q^{2}p_{\mu}\right] \frac{1}{9} \left(C_{1} + \frac{4}{3}C_{2}\right) \Pi^{(d-s)}(q^{2})G((p+q)^{2},q^{2},P^{2})$$

$$\mathcal{F}_{\mu}^{(L)}(p,q,k) = -\left[(p \cdot q)q_{\mu} - q^{2}p_{\mu}\right] \frac{1}{9} \left(C_{1} + \frac{4}{3}C_{2}\right) \Pi^{(d-s)}(q^{2})G((p+q)^{2},q^{2},P^{2})$$

$$\Pi^{d}(q^{2}) - \Pi^{s}(q^{2}) \equiv \Pi^{(d-s)}(q^{2}) = \frac{3}{4\pi^{2}} \int_{0}^{1} dx \, x \, (1-x) \log\left(\frac{m_{s}^{2} - q^{2}x(1-x)}{m_{d}^{2} - q^{2}x(1-x)}\right)$$

$$\begin{aligned} \mathcal{F}_{\mu}^{(L)}(p,q,k) &= -\left[(p \cdot q)q_{\mu} - q^{2}p_{\mu}\right] \frac{1}{9} \left(C_{1} + \frac{4}{3}C_{2}\right) \Pi^{(d-s)}(q^{2})G((p+q)^{2},q^{2},P^{2}) \\ \Pi^{d}(q^{2}) - \Pi^{s}(q^{2}) &\equiv \Pi^{(d-s)}(q^{2}) = \frac{3}{4\pi^{2}} \int_{0}^{1} dx \ x \ (1-x) \log\left(\frac{m_{s}^{2} - q^{2}x(1-x)}{m_{d}^{2} - q^{2}x(1-x)}\right) \\ G_{\rho}(p,q,k) &= i \int d^{4}y \ e^{-i(p+q)\cdot y} \langle \pi^{+}(p-k) \mid T\left\{\left(\bar{u}_{L}(0)\gamma_{\rho}c_{L}(0)\right)j_{5}^{D}(y)\right\} \mid 0 \rangle \end{aligned}$$

$$\begin{aligned} \mathscr{F}_{\mu}^{(L)}(p,q,k) &= -\left[(p \cdot q)q_{\mu} - q^{2}p_{\mu}\right] \frac{1}{9} \left(C_{1} + \frac{4}{3}C_{2}\right) \Pi^{(d-s)}(q^{2})G((p+q)^{2},q^{2},P^{2}) \\ \Pi^{d}(q^{2}) - \Pi^{s}(q^{2}) &\equiv \Pi^{(d-s)}(q^{2}) = \frac{3}{4\pi^{2}} \int_{0}^{1} dx \, x \, (1-x) \log\left(\frac{m_{s}^{2} - q^{2}x(1-x)}{m_{d}^{2} - q^{2}x(1-x)}\right) \\ G_{\rho}(p,q,k) &= i \int d^{4}y \, e^{-i(p+q) \cdot y} \langle \pi^{+}(p-k) \, | \, T \Big\{ \left(\bar{u}_{L}(0)\gamma_{\rho}c_{L}(0) \right) j_{5}^{D}(y) \Big\} \, | \, 0 \rangle \end{aligned}$$

- Both WCs (C_1 and C_2) contribute in this case.
- The contribution is small due to GIM suppression.

LCSR Results

• The final sum rule read as (for $q^2 < 0$):

$$m_D^2 f_D \mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2/M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s/M^2} \mathrm{Im}(F^{(OPE)}(s, q^2, m_D^2))$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

 $M^2 = (4.5 \pm 1.0) \text{ GeV}^2$ $s_0^D = (4.95 \pm 0.35) \text{ GeV}^2$

LCSR Results

• The final sum rule read as (for $q^2 < 0$):

$$m_D^2 f_D \mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2/M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s/M^2} \mathrm{Im}(F^{(OPE)}(s, q^2, m_D^2))$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

$$M^2 = (4.5 \pm 1.0) \text{ GeV}^2$$

 $s_0^D = (4.95 \pm 0.35) \text{ GeV}^2$

- F^{OPE} include contribution from twist-2 distribution amplitude (DA) of pion (using 2 Gegenbauer moments).
- The major source of calculated LCSR uncertainties are the uncertainties in s_0^D and the DA parameters.

LCSR Results

• The final sum rule read as (for $q^2 < 0$):

$$m_D^2 f_D \mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2/M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s/M^2} \mathrm{Im}(F^{(OPE)}(s, q^2, m_D^2))$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

$$M^2 = (4.5 \pm 1.0) \text{ GeV}^2$$

 $s_0^D = (4.95 \pm 0.35) \text{ GeV}^2$

- *F*^{*OPE*} include contribution from twist-2 distribution amplitude (DA) of pion (using 2 Gegenbauer moments).
- The major source of calculated LCSR uncertainties are the uncertainties in s_0^D and the DA parameters.

• The contribution to the decay amplitude from O_9 varies from $\sim 1.5 \times 10^{-6}$ to $\sim 7.5 \times 10^{-6}$ at $0 < q^2 < (m_D - m_{\pi})^2$: at least three order of magnitudes smaller than the WA+loop amplitude

Final Results

Figure: The results for the differential branching fraction using the dispersion relation with the fitted parameters

• The low q^2 region is generated by the "tail" of the resonances, the intermediate and high q^2 region is influenced by excited states.

Final Results

Figure: The results for the differential branching fraction using the dispersion relation with the fitted parameters

- The low q^2 region is generated by the "tail" of the resonances, the intermediate and high q^2 region is influenced by excited states.
- The low q^2 region $((0.250)^2 \le q^2 \le (0.525)^2)$, integrated branching fraction $\sim 5.5 \times 10^{-9}$ (~ 2 times the QCDf predictions). [A. Bharucha, D. Boito, C. Méaux, JHEP 04 (2021) 158]

- * In this work, we study the long distance effects in $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- * We found that the amplitude is mainly dominated by the weak annihilation topologies (loop and short distance contributions are tiny).
- * We present the preliminary results for the differential decay width for $D^+ \to \pi^+ \ell^+ \ell^-$ decays.
- * In low q^2 region ((0.250)² $\leq q^2 \leq (0.525)^2$) (in GeV²), integrated branching fraction is ~ 5.5×10^{-9} (preliminary).

- * In this work, we study the long distance effects in $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- * We found that the amplitude is mainly dominated by the weak annihilation topologies (loop and short distance contributions are tiny).
- * We present the preliminary results for the differential decay width for $D^+ \to \pi^+ \ell^+ \ell^-$ decays.
- * In low q^2 region ((0.250)² $\leq q^2 \leq (0.525)^2$) (in GeV²), integrated branching fraction is ~ 5.5 × 10⁻⁹ (preliminary).
- Work yet to be done:
 - * Compute uncertainties in the branching fraction estimates.
 - ◆ Prediction for $D_s \to 0$ in LCSR.

- * In this work, we study the long distance effects in $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- * We found that the amplitude is mainly dominated by the weak annihilation topologies (loop and short distance contributions are tiny).
- * We present the preliminary results for the differential decay width for $D^+ \to \pi^+ \ell^+ \ell^-$ decays.
- * In low q^2 region ((0.250)² $\leq q^2 \leq (0.525)^2$) (in GeV²), integrated branching fraction is ~ 5.5 × 10⁻⁹ (preliminary).
- Work yet to be done:
 - * Compute uncertainties in the branching fraction estimates.
 - ◆ Prediction for $D_s \to 0$ in LCSR.
- Future perspectives:
 - Perturbative and soft-gluon corrections to annihilation.
 - * Estimates for other CF and SCS modes.
 - * Varying resonance ansatz in the dispersion relation (including ρ', ω', ϕ').

- * In this work, we study the long distance effects in $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- * We found that the amplitude is mainly dominated by the weak annihilation topologies (loop and short distance contributions are tiny).
- * We present the preliminary results for the differential decay width for $D^+ \to \pi^+ \ell^+ \ell^-$ decays.
- * In low q^2 region ((0.250)² $\leq q^2 \leq (0.525)^2$) (in GeV²), integrated branching fraction is ~ 5.5 × 10⁻⁹ (preliminary).
- Work yet to be done:
 - * Compute uncertainties in the branching fraction estimates.
 - ◆ Prediction for $D_s \to 0$ in LCSR.
- Future perspectives:
 - Perturbative and soft-gluon corrections to annihilation.
 - * Estimates for other CF and SCS modes.
 - * Varying resonance ansatz in the dispersion relation (including ρ', ω', ϕ').
- Important message for experimental analysis:

There is no way to isolate long distance effects in $D_{(s)} \rightarrow P\ell^+\ell^-$ decays by simply vetoing resonances, one need measurements of the differential decay rates in the whole q^2 region.

Thank you for your attention !!

Thank you for your attention !!

Back up?

What do we already know from theory: QCD factorization?

- The method was originally suggested for $B \to K^* \ell^+ \ell^-$.
- First use for charm decays in $D \to \rho \ell^+ \ell^-$:

The loop topology diagram modified to include resonances. : Shifman model of loop-resonance duality

• Later, a similar method applied to $D \to \pi \ell^+ \ell^-$ (with the main focus on new physics).

- Open questions:
 - Includes only one of the four annihilation diagrams (emission from the initial d-quark) :
 - * Other three diagrams turns out to be important.
 - $\frac{1}{m_c^2}$ corrections eg. from the use of D-meson distribution amplitudes:
 - * Expected to be large (at least compared to the B-meson case).