

Kai Unger

3D Hough Hardware Trigger

www.kit.edu

Belle II Central Drift Chamber

Belle II Track Trigger System

[1] Taniguchi, N. et all; "Central Drift Chamber for Belle-II"; 2017; Journal of Instrumentation

[2] Unger, K. et all; "Realization of a state machine based detection for Track Segments in the Trigger System of the Belle II Experiment"; 2019; Topical Workshop on Electronics for Particle Physics TWEPP2019

[3] Lai, Y et all; "Level-1 track trigger with Central Drift Chamber detector in Belle II experiment"; 2018; 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)

[4] Yuki, S et all; "The Event Timing Finder for the Central Drift Chamber Level-1 Trigger at the Belle II experiment"; 2022; Journal of Physics: Conference Series [5] Unger, K. et all; "Operation of the Neural z-Vertex Track Trigger for Belle II in 2021-a Hardware Perspective" 2021; Journal of Physics: Conference Series

Belle II Track Trigger System

[1] Taniguchi, N. et all; "Central Drift Chamber for Belle-II"; 2017; Journal of Instrumentation

[2] Unger, K. et all; "Realization of a state machine based detection for Track Segments in the Trigger System of the Belle II Experiment"; 2019; Topical Workshop on Electronics for Particle Physics TWEPP2019

[3] Lai, Y et all; "Level-1 track trigger with Central Drift Chamber detector in Belle II experiment"; 2018; 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)

[4] Yuki, S et all; "The Event Timing Finder for the Central Drift Chamber Level-1 Trigger at the Belle II experiment"; 2022; Journal of Physics: Conference Series [5] Unger, K. et all; "Operation of the Neural z-Vertex Track Trigger for Belle II in 2021-a Hardware Perspective" 2021; Journal of Physics: Conference Series

Belle II Track Trigger System

FPGA based readout

5 µs for the entire trigger decision

Universal Trigger Board 4 (UT4)
Virtex UltraScale

Belle II Central Drift Camber (CDC)

Gas-filled track detector

14337 drift cells arranged in 9 super layers (SL)

Belle II Track Segment Finder (TSF)

Reduces the CDC data from to 2334 track segments

Pattern based filter

Filters on partial tracks 30° around the IP

Track Segment (TS)

īΤīV

Belle II 2D Finder

Finds 2D tracks with Hough Transformation

Parameter Space Hardware

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Parameter Space Hardware

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

ΠīV

Belle II 2D Finder

- Finds 2D tracks with Hough Transformation
- Calculates 2D track and curve information

Central

Drift

Chamber^[1]

z-vertex

Track

Trigger^[5]

Belle II z-Vertex-Track Trigger (NNT)

Track

Segment

Finder^[2]

2D

Finder^[3]

- Anything outside of +15/-15 cm is classified as fake track
- First neural net trigger in a level 1 trigger

Global

Decion

logic

īΤīV

Fake tracks

Belle II 3D Hough Trigger

3D Hough Trigger

- More time for data processing
 - More latency for deep neural network (DNN)
- More accurate resolution through 3D processing
 - Better resolution on the z-axis and the polar scattering angle Θ

īΤīV

Belle II 3D Hough Trigger

3D Hough Trigger

- More time for data processing
 - More latency for deep neural network (DNN)
- More accurate resolution through 3D processing
 - Better resolution on the z-axis and the polar scattering angle Θ

3D Hough Architektur

3D Hough Transformation

īΤīV

- 3 dimensional Hough plane
- Curves are created with the help of precalculated look-up tables 90 of 2334 possible track segments (TS)

Karlsruher Institut für Technologie

Maximum finding with position

Resource-saving FPGA implementation

Fixed cluster for fixed runtime

Cluster parameters as additional input for the neural network

- Input for the neural network are track segments (TS)
- Those that contribute the most to the maximum are selected
- The Hough transformation is performed again only for the maximum
 - No need to save the entire Hough matrix

Partikel Track

Displaced Vertex

[14Patrick Eckler; 2023 Belle II German Meeting

26.09.2024 Kai Unger

Displaced Vertex

- Changes to Track Segment Finder required
- New Displaced Vertex Trigger required

Track Segment Finder

- The Track Segment Finder must become sensitive to flat tracks
- New Track Segment Pattern

Track Segment Finder

- Patterns are trained and saved in the look-up table
- Patterns can be trained for different noise levels.
- LUT-9 and LUT-12 show the best results

[6] **Kai Unger** et all; "Data-Driven Design of the Belle II Track Segment Finder" 2023; Journal of Instrumentation,

Multi Hough Displaced Vertex Trigger

- Idea: Parallel Hough transformations with different origin hypothesis
- Scalable approach as only the hit information is needed
- Requirements: As many Hough transformations as possible on one FPGA

[7] Kai Unger et all; "A multi-Hough-based displaced vertex track trigger for the Belle II Experiment "2024; Topical Workshop on Electronics for Particle Physics TWEPP2024

Hough Hypothesen

- Maximum calculation requires too many resources
- More distant hypotheses do not result in wide-ranging Hough curves
- Idea: Ratio of upper/lower image section to image centre

[8] Elia Schmidt; "Developing a Displaced Vertex Trigger for Dark Matter Searches at the Belle II Experiment "2023; Mastethesis MPI

Hardware

- Parallel Hough Transformation
- Black/white image and then pixel counter
- Up to 12 parallel origin hypotheses on one FPGA

ありがとうございました THANK YOU

26.09.2024 Kai Unger

