

CDC Hit Clean-up for Tracking

KIT – The Research University in the Helmholtz Association

Greta Heine, Torben Ferber, Lea Reuter, Slavomira Stefkova, Giacomo De Pietro | October 01, 2024

Al Trigger Group at Belle II

CDC Hit Clean-up

The Problem of the Pr

Back in 2021...

5/23

exp 22 run 26 run dependent

 $\approx 2\%$ of wires hit

low computing cost?

à

Institute of Experimental Particle Physics (ETP)

IOW level

20

3.5

Highest measured luminosity... so far...

Greta Heine - greta.heine@kit.edu 01.10.2024

6 / 23

exp 26 run 1968 run dependent $\approx 10\%$ of wires hit medium medium level

Institute of Experimental Particle Physics (ETP)

3.5

Expected future conditions

Greta Heine - greta.heine@kit.edu 01.10.2024

7 / 23

Hit Clean-up

figures created by Lea Reuter

30.09.24 Greta Heine - greta.heine@kit.edu

10 / 27

New CDC L1 Trigger LS2: Proposal

Hit Clean-up

Tracking

How does it work?

Interaction Network a Graph Neural Network Architecture

Interaction network model by **Battaglia et al.** with PyTorch Geometric

GNNs can easily adapt to different geometries, input sizes and sparsity of data

light-weight (only 500 parameters)

implementation available in <u>hls4ml</u>

InteractionNetwork(node_dim: 4, edge_dim: 3, hidden_size: 8)

	L
Modules	Parameters
Modules R1.layers.0.weight R1.layers.0.bias R1.layers.2.weight R1.layers.2.bias R1.layers.4.weight R1.layers.4.bias 0.layers.0.weight 0.layers.2.weight 0.layers.2.weight 0.layers.4.weight 0.layers.4.weight R2.layers.0.weight R2.layers.0.weight	Parameters 88 8 64 8 24 3 56 8 64 8 64 8 32 4 8 8 8 8
R2.layers.2.weight	64
R2.layers.0.blas R2.layers.2.weight R2.layers.2.bias	8 64 8
R2.layers.4.weight R2.layers.4.bias	8 1

Total Trainable Params: 544

Training samples

background conditions

- 1) experiment 22 run 26
- 2) experiment 26 run 1984*
- 3) nominal phase 3

technical sample mix

- KKMC $\mu\mu(\gamma)$ samples
- particle gun tracks
 - **prompt**
 - **z**-shifted
 - displaced (& non-pointing)
 - non-pointing displaced vertices
 - + enriched** with low pT tracks

* 15% less background than exp 26 run 1968, but 25 times more samples available (50K vs. 2K) ** additional poisson distributed low momentum tracks for curlers

Mean ECL hits

*The number of CDC hits in the event not assigned to any track.

Graph Encoding

node attributes

wire coordinates (x, y) ADC (energy) and TDC (time)

edge attributes

truth labels

*Master thesis "Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II" of Philipp Dorwarth, May 2023

See also arXiv:2307.07289

(graph building with lookup tables)

Preliminary ADC and TDC cuts

- apply ADC and TDC cuts before training
- reduction of input data size
- better balance between signal and background hits $(\rightarrow better training)$
 - preliminary cut positions*
 - adc < 14
 - tdc < 4240
 - hit efficiency 99.5113% +- 0.0058%
 - background rejection 44.3164% +- 0.0096%
 - hit purity 9.2392% +- 0.0073% (before: 5.3893% +- 0.0043%)

* for full precision ADC and TDC information (not TRG level), ** as starting point, not optimized yet

Results

0 0

0

Example GNN Output on edge level

18 / 23 Greta Heine - greta.heine@kit.edu 01.10.2024

Example GNN Output on hit level

19 / 23 Greta Heine - greta.heine@kit.edu 01.10.2024

Evaluation on basf2 tracking optimization of Hit Cleanup settings based on tracking performance

Include Hit Cleanup as basf2 module into tracking

- use CDCWireHit* Background Flag to mark hits as background for tracking
- tracking from release 06-00-08
- monitor tracking performance and execution time
- optimize free parameters of HitCleanup on track charge efficiency

$$\mu^{-}(\gamma)$$

Tracking Modules

Preparation and Hit Cleanup RegisterEventLevelTrackingInfo TFCDC_WireHitPreparer HitCleanup

Track Finding TFCDC_ClusterPreparer TFCDC SegmentFinderFacetAutomaton TFCDC_AxialTrackFinderLegendre TFCDC_TrackQualityAsserter TFCDC_StereoHitFinder TFCDC_SegmentTrackCombiner TFCDC_TrackQualityAsserter TFCDC_TrackQualityEstimator TFCDC_TrackExporter **IPTrackTimeEstimator** CDCHitBasedT0Extraction CDCTrackingEventLevelMdstInfoFiller

Track Fitting

SetupGenfitExtrapolation FullGridChi2TrackTimeExtractor TrackFinderMCTruthRecoTracks MCRecoTracksMatcher **IPTrackTimeEstimator** Combined DAFRecoFitter TrackCreator

* dataobject used in tracking instead of CDCHits. Includes wire efficiencies. **current state of work, more to come (e.g. including TOT)

Evaluation on basf2 tracking

run 22 exp. 26										
		charge_efficiency*	efficiency*	fake_rate*	clone_rate*	hit_efficiency	total time	time_finding	time_fitting	time_HitCleanup
	basf2 only	95.19% +- 0.54%	95.70% +- 0.51%	0.26% +- 0.13%	0.07% +- 0.07%		78.9 +- 49.6 ms/call	8.9 +- 6.8 ms/call	68.2 +- 64.2 ms/call	
best Hit Cle	ean-up model**	1 96.58% +- 0.46%	1 96.84% +- 0.44%	1 0.19% +- 0.11%	1 0.00% +- 0.00%	86.19%	↓ 112.6 +- 48.3 ms/call	1 5.6 +- 4.0 ms/call	1 57.4 +- 52.9 ms/call	47.8 +- 18.2 ms/cal
run 26 exp. 1984										
		charge_efficiency*	efficiency*	fake_rate*	clone_rate*	hit_efficiency	total time	time_finding	time_fitting	time_HitCleanup
	basf2 only	87.41% +- 0.83%	88.04% +- 0.81%	2.20% +- 0.38%	0.00% +- 0.00%		120.6 +- 71.8 ms/call	45.4 +- 21.1 ms/call	70.9 +- 86.5 ms/call	
best Hit Cle	ean-up model**	1 93.05% + - 0.64%	1 93.24% + - 0.63%	1 0.59% +- 0.20%	0.00% +- 0.00%	85.61%	↓ 197.8 +- 62.2 ms/call	13.6 +- 6.9 ms/call	↑ 61.3 +- 60.0 ms/call	119.0 +- 28.5 ms/cal

nominal-phase 3 🖡

	charge_efficiency*	efficiency*	fake_rate*	clone_rate*	hit_efficiency	total time	time_finding	time_fitting	time_HitCleanup
basf2 only	78.20% +- 1.05%	78.46% +- 1.04%	6.82% +- 0.69%	0.00% +- 0.00%		346.3 +- 154.4 ms/call	195.2 +- 52.5 ms/call	146.3 +- 166.3 ms/call	
best Hit Clean-up model**	1 91.96% +- 0.69%	1 92.73% +- 0.66%	1 2.36% +- 0.39%	1 0.00% +- 0.00%	81.72%	1 266.6 +- 59.4 ms/call	1 21.6 +- 8.9 ms/call	↑ 60.2 +- 56.2 ms/call	179.1 +- 24.6 ms/cal

*track fitting metrics **current state of work, more to come, best settings: CDCWireHits, z=0 coordinates, ADC > 9, TDC > 4240, GNN cut 0.2

Summary

Hit Clean-up algorithm removes background hits reliably for KKMC muon pairs

- it can significantly improve tracking (e.g. experiment 0, KKMC muon pairs):
 - track charge fitting efficiency $78.2\% \rightarrow 92.0\%$
 - track fitting fake rate $6.8\% \rightarrow 2.4\%$
 - hit cleanup significantly reduces the time needed for track finding and track fitting at high backgrounds
 - potential for further time improvement by implementation in C++ instead of Python
- implementation on L1 TRG level is planned
 - first studies on L1 TRG conditions are carried out
 - next steps include optimization on L1 TRG conditions and implementation studies

Backup

Belle II backgrounds Background Processes

Backup

Graph Building Models

Master thesis "Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II["] of Philipp Dorwarth, May 2023

Greta Heine - greta.heine@kit.edu Backup 01.10.2024

Backup

01.10.2024 Greta Heine - greta.heine@kit.edu

Backup

TDC reduced resolution

- offline resolution: 1ns
- TRG resolution: 2ns

reduce resolution by factor 2 b

Greta Heine - greta.heine@kit.edu Backup 01.10.2024

ADC bins

- bin 0: [0,14] (only for evaluation)
 - 4 different binning modi
 - flat signal
 - flat background
 - flat noise
 - equidistant

ADC bins

train

- 1000 events
- 4 binning modi + full
- background 26_1968
- sample: displaced and angled particle gun
- inference
 - 100 events
 - 4 binning modi
 - background 26_1968
 - dimuon
 - trained on 4 binning modi + full

ADC binning modi

Backup

Greta Heine - greta.heine@kit.edu 01.10.2024

first bin overcrowded due to huge 0 bin

deviations in last bin due to ADC clipping

recheck: fixed binning for different background levels

ADC binning performance

1.02 TPR **Belle II** Simulation 2024 (own work) 1.00 $ee \rightarrow \mu\mu(\gamma)$ 0.98 0.96 trained on dimuon, full binning (AUC^{*}: 0.9831) 0.94 trained on angled_displaced, full binning (AUC^{*}: 0.9776) trained on dimuon, flat noise binning (AUC *: 0.9806) 0.92 trained on angled_displaced, flat_noise binning (AUC*: 0.9656) trained on dimuon, flat_s binning (AUC*: 0.9804) 0.90 trained on angled_displaced, flat_s binning (AUC*: 0.9531) trained on dimuon, equidistant binning (AUC*: 0.9763) 0.88 trained on angled_displaced, equidistant binning (AUC^{*}: 0.9347) trained on dimuon, flat_b binning (AUC*: 0.9686) trained on angled displaced, flat b binning (AUC *: 0.9553) 0.86 0.2 0.0 0.4 0.6

Backup

for reduced binning flat noise performs best (AUC = 0.9806)

advantage of flat noise:

need to check stability for different backgrounds

True Hit Definition

TDC

Backup

Greta Heine - greta.heine@kit.edu 01.10.2024

What hits do we want to keep? 1) all hits from signal particles? 2) or only some?

