Status and prospects of exotic hadrons at Belle II

Bruce Yabsley

University of Sydney

XVIth Quark Confinement and the Hadron Spectrum Conference, Cairns, 19th August 2024

Bruce Yabsley (Sydney)

Exotic hadrons at Belle II

Confinement 2024–08–19

- 25 + 5 minutes
- first talk of parallel session on first day
- ullet substantial results slides are pprox done
- need to add:
 - Belle II + dataset slide at start
 - some more $B\bar{B}$ details
 - summary
 - some more backup slides
- request advice on whether to add $P_{cs}(4459)^0$ -at-Belle result at the 1–2 slide level — this result was changing at CWR1

Outline

- 1 Belle II detector and datasets
- **2** Reminder: the $\Upsilon(10753)$
- **3** Using $\pi\pi\pi^0\gamma\Upsilon$ at four energies:
 - Observation of $e^+e^-
 ightarrow \omega \chi_{bJ}(1P)$
 - Search for $X_b \rightarrow \omega \Upsilon(1S)$

4 Using ω inclusive at 10745 MeV:

• Search for $e^+e^-
ightarrow \omega \eta_b(1S)$ and $\omega \chi_{b0}(1P)$

Using B-meson recon. at four energies + Belle energy scan: Measurement of energy dependence of σ(e⁺e⁻ → BB̄, BB̄*, B*B̄*)

6 Prospects

Bruce Yabsley (Sydney)

-

Reminder: the $\Upsilon(10753)$

R. Mizuk et al. (Belle), JHEP 10 (2019), 220; DMWY, CPC 44 (2020) 083001

- a third peak in $\sigma(e^+e^-
 ightarrow \Upsilon(nS)\pi\pi$
- *cf.* ↑(10860)-&-↑(11020)-only fit
- Dong, Mo, Wang, and Yuan also see this in a fit to Belle & BaBar $\sigma(e^+e^- \rightarrow b\bar{b})$ data:
 - continuum amplitude
 - BWs for 10753, 10860, & 11020
 - interference is apparent

Observation of $e^+e^- ightarrow \omega \chi_{bJ}(1P)$. . .

I. Adachi et al. (Belle II), Phys. Rev. Lett. 130 (2023) 091902

 $\sqrt{s} = 10653~(3.5~{\rm fb}^{-1}),~10701~(1.6~{\rm fb}^{-1}),~10745~(9.9),~10805~{\rm MeV}~(4.7~{\rm fb}^{-1})$

Bruce Yabsley (Sydney)

Observation of $e^+e^- \rightarrow \omega \chi_{hl}(1P)$

E-dep^t fit includes $118 \, \text{fb}^{-1}$ Belle *PRL* **113** (2014) 142001 data at 10867 MeV: note that $\omega \chi_{bl}$ is much more prominent for $\Upsilon(10753)$ than for $\Upsilon(10860)$

- phase space & BW fixed to Belle 10753 params
- two distinct solutions w different relative phases
- alternative: tail of 10860 BW. and 10753 BW

Bruce Yabsley (Sydney)

\dots and search for $X_b o \omega \Upsilon(1S)$

I. Adachi et al. (Belle II), Phys. Rev. Lett. 130 (2023) 091902

The $\pi\pi\pi^0\gamma\Upsilon$ final state can also be used to search for $e^+e^- \rightarrow \gamma X_b$, in the isospin-allowed $X_b \rightarrow \omega\Upsilon$ decay mode:

- $700 < M(\pi \pi \pi^0) < 860 \,\mathrm{MeV}$
- clear $\omega \chi_{bJ}$ reflections; shape taken from simulation
- linear smooth background
- upper limit yields for $M(X_b) \in [10450, 10650] \,\mathrm{MeV}$ obtained by counting
- (systematics in backup)

⇒ ↓ ≡ ↓ ≡ | = √Q ()

Search for $e^+e^- ightarrow \omega \eta_b(1S)$ and $\omega \chi_{b0}(1P)$

Using the 9.8 fb⁻¹ of $\sqrt{s} = 10745$ MeV data. near the $\Upsilon(10753)$ peak:

- photon $E > 50 \,\mathrm{MeV}$ $(< 75 \,\mathrm{MeV}$ in backward endcap)
- FCL cluster $-e^+e^-$ collision $|\Delta t| < 50 \,\mathrm{ns}$ versus beam bkgd
- photon-like ECL clusters required: $E(3 \times 3)/E(5 \times 5 - 4 \text{ corners}) > 0.8$
- $p_{\pi^0}^* > 260 \, (130) \, \text{MeV}$ for $\eta_b \, (\chi_{b0})$
- $|M(\pi\pi\pi^0) m_{\omega}| < 13 \,\mathrm{MeV}$
- symmetrised Dalitz r < 0.84 (0.82)
- use recoil mass $\sqrt{(\sqrt{s} E_{\omega})^2 p_{\omega}^2}$: $M_{\text{recoil}} \in (9200, 9600) \, \text{MeV}$ for η_b , \in (9780, 9950) MeV for χ_{b0}

Search for $e^+e^- \rightarrow \omega \eta_b(1S)$ and $\omega \chi_{b0}(1P)$

 χ^2 fits to recoil mass, with signal shapes fixed to simulation:

Bruce Yabsley (Sydney)

Search for $e^+e^- o \omega \eta_b(1S)$ and $\omega \chi_{b0}(1P)$

TABLE II. Systematic uncertainties in the yields for the processes $e^+e^- \rightarrow \eta_b(1S)\omega$ and $e^+e^- \rightarrow \chi_{b0}(1P)\omega$ (in units of 10³).

	$\eta_b(1S)\omega$	$\chi_{b0}(1P)\omega$
$\eta_b(1S)/\chi_{b0}(1P)$ mass	0.05	0.08
Collision-energy calibration	0.02	0.19
Cross-section shape	0.01	0.13
$\chi_{h1}(1P)$ and $\chi_{h2}(1P)$ yields	-	0.27
Background shape	0.24	0.85
Total	0.25	0.92

TABLE III. Multiplicative systematic uncertainties for the measurement of the $e^+e^- \rightarrow \eta_b(1S)\omega$ and $e^+e^- \rightarrow \chi_{b0}(1P)\omega$ cross sections (in %).

	$\eta_b(1S)\omega$	$\chi_{b0}(1P)\omega$
Track reconstruction efficiency	1.6	2.4
PID efficiency	0.8	1.0
π^0 reconstruction efficiency	3.2	7.3
R ₂ efficiency	10.0	10.0
Luminosity	0.6	0.6
$\mathcal{B}(\omega \to \pi^+ \pi^- \pi^0) \mathcal{B}(\pi^0 \to \gamma \gamma)$	0.7	0.7
Total multiplicative uncertainty	10.7	12.7

 $\sigma_{\text{Born}}(e^+e^- \rightarrow \omega \eta_b(1S)) < 2.5 \text{ pb, } cf. 1-3 \text{ pb for observed } \pi\pi \Upsilon(nS) \text{ signals,}$

inconsistent with enhancement predicted for tetraquark $\Upsilon(10753)$ consistent with 0.2–0.4 × $\pi\pi\Upsilon(nS)$ predicted for 4S–3D mixed

 $\sigma_{\text{Born}}(e^+e^- \rightarrow \omega \chi_{b0}) < 8.7 (7.8) \text{ pb, } cf. 3-4 \text{ pb for our } \omega \chi_{b1,b2} \text{ measurements}$ inconsistent with Y(4230)-like enhancement; consistent with 4S-3D expectation of comparable rates [the tighter limit is from combination with the (similar sensitivity) $\pi \pi \pi^0 \gamma \Upsilon$ result]

Multivariate algorithm to reconstruct π^0 , K_S^0 , ... then D, D^* , J/ψ , ... then B: the "Full Event Interpretation"; $\epsilon = (0.5802 \pm 0.0031 \pm 0.0116) \times 10^{-3}$ at the 4S

 $\Upsilon(4S)$ data used to measure efficiency, and validate the fit function: includes

- energy spread of the colliding e^+e^- beams
- initial state radiation (ISR)
- B-meson momentum resolution
- energy dependence of the production cross-section

at 10804, $\underline{10746},$ 10701, and 10653 $\rm MeV,$ we use an iterative procedure for self-consistency:

- fit the M_{bc} spectrum ($\Delta E'$ signal & sideband): note $B\bar{B}, B\bar{B}^*, B^*\bar{B}^*, \&$ $\gamma_{ISR}\Upsilon(4S)$ peaks
- determine the cross-sections
- fit energy dependence of *BB*, *BB*^{*}, *B*^{*}*B*^{*}, and total *bb* cross-sections
- converges after 2 iterations
 - $B^{(*)}\bar{B}^{(*)}$: include Belle results
 - total $b\overline{b}$: combined BaBar & Belle energy scans

Bruce Yabsley (Sydney)

[in discussion and on slides, draw attention to rapid rise of $B^*\bar{B}^*$ cross-section from threshold]

[in discussion and on slides, draw attention to rapid rise of $B^*\bar{B}^*$ cross-section from threshold]

Bruce Yabsley (Sydney)

Exotic hadrons at Belle II

[in discussion and on slides, draw attention to rapid rise of $B^*\bar{B}^*$ cross-section from threshold]

systematics example for $B^*\overline{B}^*$; others in backup

Bruce Yabsley (Sydney)

Confinement 2024–08–19 16 / 24

Prospects

Bruce Yabsley (Sydney)

Bruce Yabsley (Sydney)

BACKUP SLIDES

Bruce Yabsley (Sydney)

三日 のへの

 $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$, and search for $X_b \rightarrow \omega \Upsilon(1S)$

Bruce Yabsley (Sydney)

Exotic hadrons at Belle II

Confinement 2024-08-19

$e^+e^- ightarrow \omega \chi_{bJ}(1P)$, and search for $X_b ightarrow \omega \Upsilon(1S)$ L Adacherat (Belle II). Figs. Rev. Lett. 150 (2023) 091502

TABLE I: Inputs and upper limits obtained for X_b masses from 10.45 to 10.65 GeV/ c^2 (at 90% Bayesian credibility) on the product of cross section times branching fraction $\sigma_B^{u'}(e^+e^- \to \gamma X_b)\mathcal{B}(X_b \to \omega T(1S))$ ($\sigma_{X_b}^{u'}$) at $\sqrt{s} = 10.653$, 10.701, 10.745, and 10.805 GeV. Since the upper limits depend on the test X_b mass, only the least stringent bounds are reported for each collision energy.

\sqrt{s} (GeV)	M_{X_b} (GeV/ c^2)	N^{UL}	ε	$ 1 - \Pi ^2$	$1 + \delta_{ISR}$	Syst (%)	$\sigma_{X_b}^{\text{UL}}$ (pb)
10.653	10.59	10.0	0.154	0.931	0.72	8.7	0.55
10.701	10.45	8.1	0.166	0.931	0.76	8.7	0.84
10.745	10.45	8.1	0.164	0.931	0.78	8.7	0.14
10.805	10.53	10.7	0.165	0.932	0.81	8.8	0.37

TABLE II: Fractional systematic uncertainties (%) in the measurements of $\sigma_B(e^+e^- \to \omega\chi_{bJ})$ and $\sigma_B(e^+e^- \to \gamma X_b)\mathcal{B}(X_b \to \omega\Upsilon(1S))$. Systematic uncertainties from detection efficiency, branching fractions, trigger, and luminosity are correlated between various energy points while other systematic uncertainties are uncorrelated.

Final states	$\omega \chi_{b0} / \omega \chi_{b1} / \omega \chi_{b2}$				γX_b			
\sqrt{s} (GeV)	10.701	10.745	10.805	10.653	10.701	10.745	10.805	
Detection efficiency	7.2	7.2	7.2	7.2	7.2	7.2	7.2	
Branching fractions	14.7/7.4/7.3	14.7/7.4/7.3	14.7/7.4/7.3	4.7	4.7	4.7	4.7	
Radiative correction factor	2.0	5.1	13.7	0.2	0.4	0.5	0.7	
Angular distribution	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Fit model	-	16.3/4.6/8.2	10.9/8.9/20.0	-	-	-	-	
Trigger	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Beam energy	-	10.5/2.5/3.0	6.5/5.0/12.2	-	-	-	-	
Luminosity	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
Total	16.6/10.6/10.6	25.9/12.7/14.5	24.9/20.2/29.1	8.7	8.7	8.7	8.8	

・ロト ・ 同 ト ・ 三 ト ・ 三 三 ・ りゅつ

ъ.

Energy dependence of $\sigma(e^+e^- \rightarrow B\bar{B}, B\bar{B}^*, B^*\bar{B}^*)$ LAdden et al. (Refe. II), interactional of the provided that σ and σ

-