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‣ Combine particle measurements under the assumption that they originate from a common point  
(or a set of points) → incorporate additional information in your measurement. 

‣ Inputs: track helix, energy deposits, associated measurement covariances 

‣ Outputs: vertex position, 4-momentum, covariance matrix 

When is it useful? 

‣ Improving decay vertex position resolution 

‣ Lifetime measurements 

‣ Mass measurements 

‣ (Combinatorial) Background rejection 

‣ ...
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What is Vertexing?

combinatorial
decay chain

decay vertex



Example: Track Parametrisation

resulting Jacobians take the form of m⇥n matrices where m is the dimension of
the state vector and n is the dimension of the respective constraint. Thus, only172

few of its elements are non-zero. For example, for a three dimensional point
constraint k, the hypothesis of particle number j with hj = {xj , yj , zj} and x174

as in Eq. 2, only the j-th diagonal block is non-zero

@h

@x
= H =

0

@ 0 3 0

1

A . (13)176

The blocks filled with zero correspond to the parameters of particle xi 6= xj .
We will omit the columns filled with zeros throughout this section, for brevity.178

In the following we list the definitions of constraints that have been implemented
in the Belle II software, based on the specific geometry of Belle II.180

3.1.1. Reconstructed track

A track can be parametrised with a five parameter helix. In Belle II it was182

chosen to use a perigee-parametrised helix, such that the helix is defined at the
perigee, the point of closest approach of the helix to the origin of the coordinate184

system. The corresponding transformations to transport a helix to that point
are discussed in Ref. [8]. A description of the parameters can be found in Table 1,186

and a depiction of the helix is in Fig. 5. We parametrise tracks such that we
can express the model’s dependence on Cartesian parameters as188

htrack(x) =

0

BBBB@

d0

�0

!

z0

tan �

1

CCCCA
=

0

BBBB@

A(1 + U)�1

atan2(py, px) � atan2(! · �k, 1 + ! · �?)
a · q/pt

z + l · tan �

pz/pt

1

CCCCA
. (14)

Where atan2 refers to the � domain corrected inverse tangent function. We use190

the same parametrisation for the hypothesis and the measurement. We label
the measurement quantities with the index m. The residuals of iteration ↵ then192

become

r
↵
track(x) =

0

BBBB@

d0,m � d0

�0,m � �0

!m � !

z0,m � z0

tan �m � tan �

1

CCCCA
+ H

↵�1
· (x↵

k�1 � x
↵�1) . (15)194

We define the Jacobian block A := @h/@x as the derivatives with respect to the
vertex position, and B := @h/@p as the derivatives with respect to momentum.196

The positions of these blocks in the Jacobian depend on the topology fitted
and the particle represented by the track. We choose to order the state vector198

hierarchically. This means that the decay vertex parameters come before its
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Figure 5: The perigee parametrisation of the track helix, depiction adapted from [9]. A

description of the parameters can be found in Tab. 1.

momentum, followed by the child particle’s parameters. The full Jacobian H200

then takes the following form

H =

0

BBBB@

... ... ...

... ... ...

... A ... B ...

... ... ...

... ... ...

1

CCCCA
. (16)202

For the non-zero elements of the Jacobian blocks, denoted by @d0/@x = Ad0,x,
we derive the spatial components as204

Ad0,x =
py0

pt0
, Ad0,y = �

px0

pt0
,

A�0,x =
a · q · px0

p2
t0

, A�0,y =
a · q · py0

p2
t0

,

Az0,x = �
px · px0

p2
t0

, Az0,y = �
px · py0

p2
t0

, Az0,z = 1,

(17)
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htrack(x) =

x0
y0
tx
ty
p

=

x − zpx /pz

y − zpy /pz

px /pz

py /pz
p

‣ Track equations are linear for a free body:

‣ More complicated with a magnetic field - 5D helix:
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‣ We want to minimise a chi square, or in other words: 

‣ This is the "fit" part. I'll gloss over the algebra in this talk. 

‣ If your measurement is nonlinear (e.g. tracks in a B field) finding the solution can be challenging 

‣ Computationally we solve this by linearisation and iteration. 

‣ Either way, the analytical solution requires matrix inversion 

‣ If there are many parameters, this is slow. 

‣ Partially solved by techniques such as Kalman filtering. 

‣ Practical takeaway message: vertexing has a time cost. Trim your sample before fitting. 

‣ basf2: after the fit, your minimised 𝛘2 is converted to a p-value and saved as the chiProb variable.
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Fitting the Measurements
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resulting Jacobians take the form of m⇥n matrices where m is the dimension of
the state vector and n is the dimension of the respective constraint. Thus, only172

few of its elements are non-zero. For example, for a three dimensional point
constraint k, the hypothesis of particle number j with hj = {xj , yj , zj} and x174

as in Eq. 2, only the j-th diagonal block is non-zero
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The blocks filled with zero correspond to the parameters of particle xi 6= xj .
We will omit the columns filled with zeros throughout this section, for brevity.178

In the following we list the definitions of constraints that have been implemented
in the Belle II software, based on the specific geometry of Belle II.180

3.1.1. Reconstructed track

A track can be parametrised with a five parameter helix. In Belle II it was182

chosen to use a perigee-parametrised helix, such that the helix is defined at the
perigee, the point of closest approach of the helix to the origin of the coordinate184

system. The corresponding transformations to transport a helix to that point
are discussed in Ref. [8]. A description of the parameters can be found in Table 1,186

and a depiction of the helix is in Fig. 5. We parametrise tracks such that we
can express the model’s dependence on Cartesian parameters as188
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Where atan2 refers to the � domain corrected inverse tangent function. We use190

the same parametrisation for the hypothesis and the measurement. We label
the measurement quantities with the index m. The residuals of iteration ↵ then192
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We define the Jacobian block A := @h/@x as the derivatives with respect to the
vertex position, and B := @h/@p as the derivatives with respect to momentum.196

The positions of these blocks in the Jacobian depend on the topology fitted
and the particle represented by the track. We choose to order the state vector198

hierarchically. This means that the decay vertex parameters come before its
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V0?
‣ Analyst is provided with track objects (5D helices). 

‣ Information on the individual track hits is not available. Track fit can't be repeated at analysis level. 

‣ Tracks are reconstructed assuming they originate from the IP. If they don't (displaced vertex), the energy loss 
due to material effects is overestimated → a bias is introduced 

‣ V0Finder locates and fits opposite charged pairs to produce V0 (Ks, Λ, γ) candidates at tracking level. 

‣ You can then load them in your analysis with a syntax such as: 
ma.fillParticleList('K_S0:V0 -> pi+ pi-', cut=<yourcut>, path=<yourpath>) 

‣ Compared to building the Ks (or Λ) at analysis level, these have lower efficiency but higher quality. 

‣ Standard lists are available through convenience functions (stdKshorts, stdLambdas) merging the two 
approaches. See the documentation for more details.
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Vertexing Tools at Belle II
‣ KFit:  

‣ Basic kinematic fitter 

‣ Inherited from Belle 

‣ RAVE: 

‣ Progressive single vertex fit 

‣ External package from CMS vertexing libraries 

‣ Deprecated for analysis use 

‣ TreeFitter: 

‣ Progressive fit of the decay chain 
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KFit
‣ Single vertex fit inherited from Belle. 

‣ Non-iterative: pure matrix inversion. 

‣ Called through: 

‣ Can perform mass constrained fits 

‣ Can perform IP constrained fits (more on this later). 

‣ Need to fit a single vertex? KFit is (usually) fine.

vertex.vertexKFit(list_name, conf_level, decay_string='', constraint='', path=None)
vertex.vertexKFitDaughtersUpdate(list_name, conf_level, constraint='', path=None)
vertex.massKFit(list_name, conf_level, decay_string='', path=None)
vertex.massKFitDaughtersUpdate(list_name, conf_level, decay_string='', path=None)
vertex.massVertexKFit(list_name, conf_level, decay_string='', path=None)
vertex.massVertexKFitDaughtersUpdate(list_name, conf_level, decay_string='', path=None)

vertex.KFit(list_name, conf_level, fit_type='vertex', constraint='', daughtersUpdate=False, decay_string='', path=None)

old

new
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RAVE

‣ External package from CMS vertexing libraries 

‣ Progressive single vertex fit (Kalman) 

‣ Actually slower than KFit, due to API overhead. 

‣ Still required for some key applications:  

‣ V0Finder through Genfit integration in tracking.  

‣ TagV using adaptive vertex fitting.  

‣ If you want to do TDCVP you probably need this, 
but I won't cover it here.

6 Physics Analysis Software

x

zBS

B0

D+

Fig. 36: Schematic representation of the tagging B vertex fit. A B meson has an higher

probability than a D meson issued from the B to decay inside the ellipsoid parallel to the

boost direction. BS represent the beam spot.

boost of SuperKEKB produces an average distance between the two B mesons of about

130 µm, 35% smaller than the 200 µm of KEKB. This makes it more di�cult to resolve the

decay vertices of the two B mesons and it is one of the main motivations for the devel-

opment of the Belle II Pixel Vertex Detector. The new hardware, together with the new

vertex reconstruction algorithms, provides an improvement of the vertex resolution of both

B mesons. This translates to �t with a resolution of 0.77 ps and a bias of �0.03 ps, which

provides a superior separation capability compared to Belle (resolution = 0.92 ps, bias =

0.2 ps), exceeding then the design requirements. Figure 37 (right) shows the �t residuals of

B0 ! [J/ ! µ+µ�][K0
S

! ⇡+⇡�].
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Fig. 37: Tag side vertex fit residuals (left): bias = 6 µm, resolution = 53 µm, and

�t residuals (right): bias = �0.03 ps, resolution = 0.77 ps, of the fully reconstructed

B0 ! [J/ ! µ+µ�][K0
S

! ⇡+⇡�]. Both fits are performed using the sum of three

Gaussian functions.

6.3. Composite Particle Reconstruction

In the Belle II experiment, short-lived particles decaying at or near the interaction point (such

as B or charm mesons) cannot be measured directly by the sub-detectors, but instead must

be reconstructed from the four-momenta of their long-lived decay products. Discriminating

variables sensitive to composite particle properties can be subsequently built from final state

information in order to perform background separation. A few such quantities are discussed

in this section.

93/690

TagV



‣ Kalman based filter for a whole particle decay chain ("tree"). 

‣ Automatically builds the tree structure based on provided logic (hypothesis-based). 

‣ Can even be a sum of different decay channels - the fitter will know from particle relations.
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TreeFitter

your decay reconstruction

minimum confidence level, -1 = not converged
takes names or pdg codes

beam constraint 

update daughter kinematics
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Advantages of Treefitter - Fitting π0

J/ 
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Figure 1: a) Depiction of a J/ ! µ+µ�
decay. The red lines show the track helix ap-

proximations obtained from the tracking detectors, the blue dashed lines show the decaying

particle momentum vectors found by the fit. Since the decay length of the J/ is too short

to be seen in the detector, its decay vertex is taken to be the one of the B0
. b) Depiction of a

B0 ! J/ (! µ+µ�
)K0

S(! ⇡+⇡�
) decay. Measured track helices do not necessarily overlap

in three dimensions. The depicted length ratios are not to scale.

B
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⇡
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Figure 2: Depiction of a the decay B0 ! K0
SJ/ . The red lines show the track helix approxi-

mations obtained by the tracking detectors, the blue dashed lines show the composite particle

momentum vectors found by the fit. The dashed black lines depict the photon momenta found

by the fit. Note that these can only be determined by the fit as the directional information

of the calorimeter is not su�cient. The initial guess is that they point from the interaction

point towards the calorimeter cluster. The decay lengths of the J/ and ⇡0
are too short to

be seen in the detector therefore the vertex positions are taken from the particle above them

in the hierarchy.

3

‣ Consider the decay B0→J/ψ Ks, Ks→π0π0 

‣ Since photons are assumed to come from (0,0,0), this will 
introduce a bias on the Ks mass. 

‣ KFit can refit ONE neutral pion to the fitted vertex position, 
but no more, and only if tracks are present. 

‣ TreeFitter can handle the fit provided the π0 is 
mass constrained.
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Figure 10: a) P-value of the fits to B0 ! J/ K0
S. b) Fitted mass of the K0

S (green) and

the mass before the fit (black). The mass distribution is centred around the true value after

performing the fits with a ⇡0
mass constraint. Qualitatively this is the same result as obtained

in Ref. [1]. The bias was removed and the width reduced by 9.65 MeV.

chain is given by the J/ ! µ
+
µ

� decay. The other vertices are very uncertain366

due to the absence of charged tracks. The best assumption that can be made for
the production vertex position of the four photons is that they originate from368

the interaction point, if they are fitted in a single stage fit oblivious of the J/ .
Performing a fit with mass constrained ⇡0-mesons improves the extracted mass370

of the K
0
S, so that after the fit, it is centred around the true value, as depicted

in Fig. 10b. It is then possible to further reject background outside the nominal372

mass window and improve the signal purity when analysing this channel.

4.4. Using a beamspot constraint to improve the decay vertex resolution of B-374

mesons

A beam constraint enforces the production vertex of the B
0-meson to lie376

within the beamspot covariance, see Sec. 3.1.7. It can be used to improve the
decay vertex resolution of B-mesons and all children particles in the decay chain,378

depicted in Fig. 11a, Fig. 11b and Fig. 12. The resolution for B-mesons was
improved by 15% to a value of about 31 µm in the example of the decay chain380

B̄
0

! D
⇤+(D0(K�

⇡
+)⇡+)⇡�.

4.5. Extracting the decay length of D
0
-mesons from D

⇤+
decays using a geo-382

metric constraint

The geometric constraint, see 3.1.5, constrains production and decay vertices384

of long lived particles in the decay chain. This allows for the extraction of
flight lengths and thus lifetimes of intermediate particles such as D

0-mesons.386

We perform this study on B̄
0

! D
⇤+(D0(K�

⇡
+)⇡+)⇡� decays and extract

the decay length of the D
0-meson. The results are depicted in Fig. 13. Since388

D
⇤+-mesons decay almost instantly, we will use the three dimensional distance

between the B
0 and the D

0 decay vertices. To improve the resolution on the390

B
0 vertex we apply a beamspot constraint.

19
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Parametrising the Decay Tree

π−

B0

D⋆+ D0

π+

π+

K−

Mini-Exercise: Can you count 
the parameters of this decay? 

‣ There are several ways. This is one of them. 

‣ For each particle, assign a 3-momentum {px,py,pz} 

‣ If the particle is a final state, use the nominal mass. Otherwise, assign an energy {E}. 

‣ If the particle is short lived ("resonance") do nothing more. 

‣ If it's long lived ("composite") assign a decay vertex {x,y,z} and a flight length {θ}. 

‣ If it's the head of the decay, assign a decay vertex {x,y,z}. 
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Parametrising the Decay Tree
‣ There are several ways. This is one of them. 

‣ For each particle, assign a 3-momentum {px,py,pz} 

‣ If the particle is a final state, use the nominal mass. Otherwise, assign an energy {E}. 

‣ If the particle is short lived ("resonance") do nothing more. 

‣ If it's long lived ("composite") assign a decay vertex {x,y,z} and a flight length {θ}. 

‣ If it's the head of the decay, assign a decay vertex {x,y,z}. 

3

3
3

3

7

4 8 = 31
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Mass Constraint

‣ Some things to note: 

‣ Fixing the mass to the nominal value only makes sense if the particle has a narrow mass peak. If the 
width is measurable, then a mass constraint will cause a bias. 

‣ If you fit on the mass, your mass will be a delta, you can't use it anymore...

Note that the energy row of Bi depends on how the particle is parametrized.
Composite particles, for example, are parametrized with an energy variable in262

the state vector, resulting in B = � 4, while for stable particles Eq. 30 is used.

3.1.5. Geometric constraint264

The geometric constraint fits the decay length parameter ✓ for composite
particles, see Fig. 6. Accounting for the geometry we have266

0 = uparent + � � u . (31)

Instead of directly extracting a flight vector �, we use the unit vector of the268

momentum as it is well constrained by the previously filtered kinematic con-
straints, substituting � = ✓ · p/|p|, allows for a more accurate estimation of ✓,270

the decay length parameter in our model. In contrast with [1], we choose decay
length rather than decay time, because it makes the fit more linear. We define272

the residual as

r
↵(x) = uparent + ✓ ·

p

|p|
� u + H

↵�1
· (x↵

k�1 � x
↵�1) . (32)274

using

A =
@h

@uparent
= 3, B =

@h

@u
= � 3, C =

@h

@✓
=

1

|p|

0

@
px

py

pz

1

A , (33)276

and

D =
@h

@p
=

✓

|p|3

0

@
(p2

y + p
2
z) �pxpy �pxpz

�pypx (p2
x + p

2
z) �pypz

�pzpx �pzpy (p2
x + p

2
y)

1

A , (34)278

such that

H =

0

@
... ... ... ... ...

... A ... B ... C ... D ...

... ... ... ... ....

1

A . (35)280

3.1.6. Mass constraint

The mass constraint requires a particle four-vector to be consistent with its282

nominal mass. We treat the particle as a measurement with infinite precision
and use the mass value provided by PDG such that284

r
↵(x) = m

2
PDG � E

2 + |p|
2

� H
↵�1

· (x↵
k�1 � x

↵�1), (36)

with286

H =

0

BB@

... 2px ...

... 2py ...

... 2pz ...

... �2E ...

1

CCA . (37)
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Geometric Constraint (Flight Length)
‣ Not really a constraint, but rather a way the TreeFitter 

accounts for correlations between flight parameters. 

‣ Applied automatically: 

‣ We have a very good handle on momentum uncertainties: 

‣ Measure on the momentum projection 

‣ 1 new parameter {θ} but 3 equations: -2 degrees of freedom! 

‣ After the fit, basf2 fills ExtraInfo("decayLength") and ExtraInfo("decayLengthErr") 

‣ ... or you can use the variables flightDistance and flightDistanceErr

x

y

uparent

� = ⌧ · p�

m

Calorimeter cluster

Production vertex

x

y

uparent

� = ✓ ·
p

|p|

u

Decay vertex

Production vertex

Figure 6: (a) The photon constraint, Eq. 22, reduced to two dimensions for simplicity. The

vector � is defined as pointing from the photon’s production vertex to the measured calorimeter

cluster, indicated with the photons parent’s coordinate vector u and measurement vector m.

(b) Geometric constraint, Eq. 32. The vector � is defined pointing from the particles decay

and production vertex, indicated with the particle’s and its parent’s coordinate vector u.

and for the momenta206

Bd0,px = �
y((aq)2r + 2aqpyx + 2p

2
y�)

pt0p
2
t�

2

�
px(2pyx� + aq(y2(�2 + �) + x

2
�)

pt0p
2
t�

2
,

Bd0,py =
2p

2
xx� + 2pxy(py � aqx + pypt0/pt)

pt0p
2
t�

2

+
aq(aqrx � py(x2(�2 + �) + y

2
�))

pt0p
2
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2
,
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and208
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2
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2
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,
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2
x + pypy0 � aqpxy

�
,
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0 = uparent + Δ − u

r(x) = uparent + θ ⋅
p

|p |
− u
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Beam Spot Constraint
‣ This means different things in different fitters. 

‣ General concept: use the beam spot information to constrain the vertex. But how? 

‣ KFit has 3 versions: 

‣ ipconstraint - constrain the vertex to the beam spot. 

‣ iptube - as above, but only on the x-y plane. 

‣ pointing - constrain the momentum vector to pass through the beam spot. 

‣ TreeFitter handles it by creating a new "Origin" particle to act as the new head of the decay. 

‣ If the old head was short lived, this is equivalent to ipconstraint. 

‣ If it was long lived, it's more akin to pointing (and removes 2 degrees of freedom because of the flight 
length constraint)

D⋆+
D0

π+

π+

K−
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Can I Fit This? Degrees of Freedom
‣ When in doubt, count the degrees of freedom: NDF = N(equations) - N(parameters) 

‣ If NDF>0 you can fit, otherwise you need to add a constraint (mass, beamspot, ...) 

‣ π0(γγ)? 

‣ D0->Kππ0(γγ)? 

‣ D0->Ks(ππ)π0(γγ)? 

parameters equations net

track {px, py, pz} 5 (helix) 2

neutral {px, py, pz} 3 (energy + 
    cluster position)

0

resonance {E, px, py, pz} 4 (energy conservation) 0

long lived {E, px, py, pz} 
+{x,y,z,θ}

4 (energy conservation) 
+3 (flight)

-1

head {E, px, py, pz} 
+{x,y,z}

4 (energy conservation) -3

mass 1 1

beamspot 0 or 2 (flight) 0/2

Mini-Exercise: Can you fit these decays?
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Can I Fit This? Degrees of Freedom
‣ When in doubt, count the degrees of freedom: NDF = N(equations) - N(parameters) 

‣ If NDF>0 you can fit, otherwise you need to add a constraint (mass, beamspot, ...) 

‣ π0(γγ)?  

‣ [-3+0+0] = -3 →  

‣ D0->Kππ0(γγ)? 

‣ [-3+2*2+0+2*0] = 1 → YES  

‣ D0->Ks(ππ)π0(γγ)? 

‣ [-3-1+2*2+0+2*0] = 0 → YES, if mass  
                                       constrained 

parameters equations net

track {px, py, pz} 5 (helix) 2

neutral {px, py, pz} 3 (energy + 
    cluster position)

0

resonance {E, px, py, pz} 4 (energy conservation) 0

long lived {E, px, py, pz} 
+{x,y,z,θ}

4 (energy conservation) 
+3 (flight)

-1

head {E, px, py, pz} 
+{x,y,z}

4 (energy conservation) -3

mass 1 1

beamspot 0 or 2 (flight) 0/2

Mini-Exercise: Can you fit these decays?

NO, not even with  
a mass constraint
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Recommendations and Conclusions
‣ Remember that garbage in is garbage out, and may slow down the execution and/or cause fit failures. 

‣ Do some preselection before fitting. 

‣ Be careful when comparing p-values of different fitters (or different TreeFitt-ed channels); they might have 
different distributions. Make sure you're not comparing apples to oranges before cutting over it. 

‣ You might come across a vertex.fitVertex function. This is not recommended for use, although I 
occasionally see it being copy-pasted around. Please use vertex.KFit or vertex.treeFit. 

‣ I'd really like to get rid of it someday...  

‣ Don't use TreeFitter in release-03 (bug alert!). But you shouldn't be using old releases anyways. 

‣ If you have questions, please ask. 

‣ ... or visit questions.belle2.org .

Thank you for your attention!

http://questions.belle2.org


Backup
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Neutral Final States
‣ We already discussed the charged track: 

‣ For neutral clusters, we have:

resulting Jacobians take the form of m⇥n matrices where m is the dimension of
the state vector and n is the dimension of the respective constraint. Thus, only172

few of its elements are non-zero. For example, for a three dimensional point
constraint k, the hypothesis of particle number j with hj = {xj , yj , zj} and x174

as in Eq. 2, only the j-th diagonal block is non-zero

@h

@x
= H =

0

@ 0 3 0

1

A . (13)176

The blocks filled with zero correspond to the parameters of particle xi 6= xj .
We will omit the columns filled with zeros throughout this section, for brevity.178

In the following we list the definitions of constraints that have been implemented
in the Belle II software, based on the specific geometry of Belle II.180

3.1.1. Reconstructed track

A track can be parametrised with a five parameter helix. In Belle II it was182

chosen to use a perigee-parametrised helix, such that the helix is defined at the
perigee, the point of closest approach of the helix to the origin of the coordinate184

system. The corresponding transformations to transport a helix to that point
are discussed in Ref. [8]. A description of the parameters can be found in Table 1,186

and a depiction of the helix is in Fig. 5. We parametrise tracks such that we
can express the model’s dependence on Cartesian parameters as188

htrack(x) =

0

BBBB@

d0

�0

!

z0

tan �

1

CCCCA
=

0

BBBB@

A(1 + U)�1

atan2(py, px) � atan2(! · �k, 1 + ! · �?)
a · q/pt

z + l · tan �

pz/pt

1

CCCCA
. (14)

Where atan2 refers to the � domain corrected inverse tangent function. We use190

the same parametrisation for the hypothesis and the measurement. We label
the measurement quantities with the index m. The residuals of iteration ↵ then192

become

r
↵
track(x) =

0

BBBB@

d0,m � d0

�0,m � �0

!m � !

z0,m � z0

tan �m � tan �

1

CCCCA
+ H

↵�1
· (x↵

k�1 � x
↵�1) . (15)194

We define the Jacobian block A := @h/@x as the derivatives with respect to the
vertex position, and B := @h/@p as the derivatives with respect to momentum.196

The positions of these blocks in the Jacobian depend on the topology fitted
and the particle represented by the track. We choose to order the state vector198

hierarchically. This means that the decay vertex parameters come before its

9

x

y

uparent

� = ⌧ · p�

m

Calorimeter cluster

Production vertex

x

y

uparent

� = ✓ ·
p

|p|

u

Decay vertex

Production vertex

Figure 6: (a) The photon constraint, Eq. 22, reduced to two dimensions for simplicity. The

vector � is defined as pointing from the photon’s production vertex to the measured calorimeter

cluster, indicated with the photons parent’s coordinate vector u and measurement vector m.

(b) Geometric constraint, Eq. 32. The vector � is defined pointing from the particles decay

and production vertex, indicated with the particle’s and its parent’s coordinate vector u.

and for the momenta206

Bd0,px = �
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and208
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3.1.2. Reconstructed photon210

For photons we measure the position of the calorimeter cluster and its energy
and can infer the vertex parameters. The geometry, depicted in Fig. 6, gives212

0 = uparent + � � m, (20)

substituting � = ⌧ · p and inserting the energy relation, we get214

hphoton(x) =

0

BBB@

ux + ⌧ · px

uy + ⌧ · py

uz + ⌧ · pzq
p2
x + p2

y + p2
z

1

CCCA
and mphoton(x) =

0

BB@

mx

my

mz

Em

1

CCA , (21)

where {ux, uy, uz} are the production vertex coordinates, {px, py, pz} are the216

parameters of the momentum vector pointing from the production vertex to the
calorimeter cluster, {mx, my, mz, Em} are the position and measured energy of218

the corresponding ECL cluster. The parameter ⌧ is a scalar with the units
of time, it can be eliminated when writing down the residual to reduce the220

dimensionality of the equation system and avoid a trivial local minimum of r�
at ⌧ = 0 when taking {ux, uy, uz} = 0 as the starting point of the first iteration.222

Since the geometry of the detector is cylindrical, we can not simply eliminate
any of the dimensions as this could introduce a pole in the residual equations.224

Therefore we sort the momenta and eliminate the dimension with the highest
momentum such that we form a 3-dimensional equation system226

r
0↵
photon(x) =

0

B@

(mi � ui) � (mk � uk)
pi

pk

(mj � uj) � (mk � uk)
pj

pk

Em �

q
p2
i + p2

j + p2
k

1

CA + H
↵�1

· (x↵
k�1 � x

↵�1) , (22)

where the indices i, j, k indicate the dimensions by order of increasing momen-228

tum pk � pi � pj . We define Ai,uk := @h
0
i/@uk and Bi,pk := @h

0
i/@pk with the

hypothesis of the reduced system r
0. Thus, the non-zero entries are230

A0,uk =
pi

pk
, A0,ui = �1,

A1,uk =
pj

pk
, A1,uj = �1,

B0,pk = p
�2
k , B0,pi =

uk � mk

pk
,

B1,pk = p
�2
k , B1,pj =

uk � mk

pk
,

B2,pk = �
pk

|p|
, B2,pi = �

pi

|p|
, B2,pj = �

pj

|p|
.

(23)

The full Jacobian then takes the form232

H =

0

@
... ... ...

... A ... B ...

... ... ...

1

A . (24)
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Or KLong, or... neutron?

0 = uparent + δ − m

3.1.2. Reconstructed photon210

For photons we measure the position of the calorimeter cluster and its energy
and can infer the vertex parameters. The geometry, depicted in Fig. 6, gives212

0 = uparent + � � m, (20)

substituting � = ⌧ · p and inserting the energy relation, we get214

hphoton(x) =

0

BBB@

ux + ⌧ · px

uy + ⌧ · py

uz + ⌧ · pzq
p2
x + p2

y + p2
z

1

CCCA
and mphoton(x) =

0
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my

mz

Em

1

CCA , (21)

where {ux, uy, uz} are the production vertex coordinates, {px, py, pz} are the216

parameters of the momentum vector pointing from the production vertex to the
calorimeter cluster, {mx, my, mz, Em} are the position and measured energy of218

the corresponding ECL cluster. The parameter ⌧ is a scalar with the units
of time, it can be eliminated when writing down the residual to reduce the220

dimensionality of the equation system and avoid a trivial local minimum of r�
at ⌧ = 0 when taking {ux, uy, uz} = 0 as the starting point of the first iteration.222

Since the geometry of the detector is cylindrical, we can not simply eliminate
any of the dimensions as this could introduce a pole in the residual equations.224

Therefore we sort the momenta and eliminate the dimension with the highest
momentum such that we form a 3-dimensional equation system226

r
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0
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where the indices i, j, k indicate the dimensions by order of increasing momen-228

tum pk � pi � pj . We define Ai,uk := @h
0
i/@uk and Bi,pk := @h

0
i/@pk with the

hypothesis of the reduced system r
0. Thus, the non-zero entries are230
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, A1,uj = �1,

B0,pk = p
�2
k , B0,pi =

uk � mk

pk
,

B1,pk = p
�2
k , B1,pj =

uk � mk

pk
,

B2,pk = �
pk

|p|
, B2,pi = �

pi

|p|
, B2,pj = �

pj

|p|
.

(23)

The full Jacobian then takes the form232
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Obtained by factoring out the highest momentum component.

3 equations



5th Starter Kit Workshop |  31 Jan 2020  |  Francesco Tenchini !22

Flight Length: Geometric Constraint (2)
‣ But what about charged, long lived particles? 

‣ Particles such as Σ+ can travel for several cm and are affected by the magnetic field. 

‣ Unfortunately at the moment all composites are assumed to fly straight. (Jira ticket BII-3893) 

‣ If you're interested in working on channels with long lived charged composites, the feature will have to be 
developed. Please comment on the ticket or send me an e-mail.

https://agira.desy.de/browse/BII-3893

