
Yo Sato (Tohoku University)
Belle II Starter Kit workshop, KEK, January 2020

Introduction to
the analysis package.

Contents
An experiment’s workflow

What is basf2?

Invoking basf2 and the equivalent of “Hello World”

Modules, paths, the DataStore and how to steer them all

A word about file types and why you should use the analysis package

Now let’s step through an example

Candidate/particle based analysis

Physics quantities and the VariableManager

How to get data out

Nomenclature

One final thing about Belle vs. Belle II

An experiment’s workflow

Page 4

The big picture
Tsukuba Hall

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 5

Nature

PYTHIA

The big picture

Published
paper

What do you need?

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 6

Nature

PYTHIA

The big picture

Published
paper

What do you need?

Data storage → root (trees) files
Data processing → C++ code
Scripting → Python

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 7

Nature

PYTHIA

The big picture

rawData.root

Real Detector

Detector
Simulation
GEANT4

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 8

Nature

PYTHIA

The big picture

rawData.root

ECLClusters,
Tracks,
PIDLikelihoods

Real Detector

Detector
Simulation
GEANT4

MCParticles

Reconstruction

(c,m)dst.root

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 9

Nature

MCParticles

PYTHIA

The big picture

Real Detector

Detector
Simulation
GEANT4

rawData.root

ECLClusters,
Tracks,
PIDLikelihoodsReconstruction

basf2 analysis
steering script

nTuples.root

(c,m)dst.root

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 10

MCParticles

The big picture

basf2 analysis
steering script

nTuples.root“Offline” analysisPublished
paper Analysis note Measurement

rawData.root

Reconstruction

ECLClusters,
Tracks,
PIDLikelihoods

(c,m)dst.root

Nature

PYTHIA

Real Detector

Detector
Simulation
GEANT4

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 11

Nature

MCParticles

PYTHIA

The big picture

Real Detector

Detector
Simulation
GEANT4

rawData.root

ECLClusters,
Tracks,
PIDLikelihoods

basf2 analysis
steering script

nTuples.root

(c,m)dst.root

This tutorial

“Offline” analysisPublished
paper Analysis note MeasurementHappy

supervisor
cool things

with pandas

| Introduction to the analysis package | Belle II Starterkit January 2020

Reconstruction

What is basf2?

Page 13

basf2 is C++14 "under the hood"

• Packages contain C++ modules to manipulate data.

• In analysis: we have code to build particles from primitive objects (like
tracks and calorimeter clusters).

• We also calculate physics quantities, and apply cuts.

Python 3.6 code for steering

• Load and configure C++ modules
• analysis modules and modules from other packages

• Also python does some high-level analysis tasks.

• You will write a fair bit of python during the workshop.

The code

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 14

basf2 is C++14 "under the hood"

• Packages contain C++ modules to manipulate data.

• In analysis: we have code to build particles from primitive objects (like
tracks and calorimeter clusters).

• We also calculate physics quantities, and apply cuts.

Python 3.6 code for steering

• Load and configure C++ modules
• analysis modules and modules from other packages

• Also python does some high-level analysis tasks.

• You will write a fair bit of python during the workshop.

The code

Heavy liftin
g

Readable scripts

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 15

• Our software is organised into "packages".
• https://stash.desy.de/projects/B2/repos/software/browse
• There are packages for subdetectors, tracking, simulation…
• As a student/postdoc/collaborator you might work on some of them.

• BUT! When you want to do a physics measurement. You really only care about:

analysis, mva, skim, b2bii

Code to do an analysis and "steer" many other
packages' modules.
(Like reconstruction, generating simulation, fitting
vertices …)

This code is kind of like the "user interface". Multivariate analysis (classifier
training, machine learning)

Tools to convert Belle mdst files to
Belle II mdst.

What is the analysis package?

| Introduction to the analysis package | Belle II Starterkit January 2020

High level scripts to "skim" data to
get it into a usable size: run
centrally.

https://stash.desy.de/projects/B2/repos/software/browse

Page 16

documentation https://software.belle2.org
there is fairly good documentation

questions https://questions.belle2.org
for anything really, not just analysis package

examples $BELLE2_RELEASE_DIR/<packagename>/examples
so, for us <packagename> = analysis

the code https://stash.desy.de/projects/B2/repos/software/browse
$BELLE2_RELEASE_DIR

I’m stuck, where do I go for help?
Probably the most important slide

| Introduction to the analysis package | Belle II Starterkit January 2020

https://software.belle2.org/
https://questions.belle2.org/
https://stash.desy.de/projects/B2/repos/software/browse/analysis/examples

Page 17

documentation https://software.belle2.org
there is fairly good documentation

questions https://questions.belle2.org
for anything really, not just analysis package

examples $BELLE2_RELEASE_DIR/<packagename>/examples
so, for us <packagename> = analysis

the code https://stash.desy.de/projects/B2/repos/software/browse
$BELLE2_RELEASE_DIR

I’m stuck, where do I go for help?
Probably the most important slide

Go here firs
t!

| Introduction to the analysis package | Belle II Starterkit January 2020

https://software.belle2.org/
https://questions.belle2.org/
https://stash.desy.de/projects/B2/repos/software/browse/analysis/examples

Invoking basf2 and the
equivalent of “Hello World”

Page 19

• Let’s setup basf2 !
• But, first of all, you should know which release can be and should be used.

$. /cvmfs/belle.cern.ch/tools/b2setup
$ b2setup --help # You can see available releases of basf2
...

The following releases are available:
...

release-04-01-00
release-04-01-01
light-1912-icarus

$ b2help-releases # or you can ask the recommended release
release-04-01-01

How to invoke basf2
Belle analysis software framework 2

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 20

Q. Which release should I use?
A. I really recommend you to use the latest release-AA-BB-CC or light-YYMM-CODENAME.

release-AA-BB-CC
A full release, such as release-04-01-01 and release-03-02-04.
If you execute `b2help-releases`, it tells the latest full release.

light-YYMM-CODENAME
A light release, such as light-1912-icarus and light-1911-heracles.
Made from only a few packages, analysis, mdst, skim, b2bii (from light-1912) etc..
They are suitable for doing analysis!

How to invoke basf2
Belle analysis software framework 2

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 21

• Hopefully you've seen this already.
• If not you will see it many times in this workshop.
• At the command line:

$. /cvmfs/belle.cern.ch/tools/b2setup
$ b2setup release-04-01-01
$ basf2 --info

How to invoke basf2
Belle analysis software framework 2

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 22

• Then Let’s setup basf2 for the release!
• `. /cvmfs/belle.cern.ch/tools/b2setup` needs only once per session.

How to invoke basf2
Belle analysis software framework 2

| Introduction to the analysis package | Belle II Starterkit January 2020

$. /cvmfs/belle.cern.ch/tools/b2setup # If you have not yet
$ b2setup release-04-01-01
$ basf2 --info $. /cvmfs/belle.cern.ch/tools/b2setup release-04-01-01

$ basf2 --info

Page 23

https://jupyterhub.belle2.org

Today we’ll use jupyter
You will cover command line usage later in the workshop

| Introduction to the analysis package | Belle II Starterkit January 2020

https://jupyterhub.belle2.org/

Page 24

https://jupyterhub.belle2.org

Start a server, open the first exercise...

| Introduction to the analysis package | Belle II Starterkit January 2020

https://jupyterhub.belle2.org/

Page 25

https://jupyterhub.belle2.org

basf2 --info

| Introduction to the analysis package | Belle II Starterkit January 2020

https://jupyterhub.belle2.org/

Page 26

basf2 --info
Also works on a terminal to KEKCC or NAF

Source the logon script,
pick a release

Execute this

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 27

basf2 --info
Also works on a terminal to KEKCC or NAF

Useful information

| Introduction to the analysis package | Belle II Starterkit January 2020

Modules, paths, the DataStore
and how to steer them all

Page 29

Modules, paths, the DataStore
What do we need to process the data?

1) A set of classes (modules) that process the data
→ BASF2 module

Kuhr, Pulvermacher, Ritter, Hauth, Braun
Comput. Softw. Big Sci. 3 (2019) no.1

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 30

Modules, paths, the DataStore
What do we need to process the data?

1) A set of classes (modules) that process the data
→ BASF2 module

Module A Module B Module C Module Dinput.root output.root

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 31

Modules, paths, the DataStore
What do we need to process the data?

1) A set of classes (modules) that process the data
→ BASF2 module

Module A Module B Module C Module Dinput.root output.root

2) A set of classes (dataobjects) that hold the data and allow module to pass thing one to the other
→ BASF2 dataStore

DataStore

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 32

Modules, paths, the DataStore
What do we need to process the data?

1) A set of classes (modules) that process the data
→ BASF2 module

Module A Module B Module C Module Dinput.root output.root

2) A set of classes (dataobjects) that hold the data and allow module to pass thing one to the other
→ BASF2 dataStore

DataStore

3) An order in which the modules must be executed
→ BASF2 path

Path

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 33

What does a steering file look like?
How to I implement all this?

A steering file is a python script that runs
→ the modules that you need
→ in the order you need
→ on the data you need

| Introduction to the analysis package | Belle II Starterkit January 2020

A word about file types and
why you should use the
analysis package

Page 35

l A dst contains basf2 objects which will populate a DataStore.
l data summary table
l Basically: a special ROOT file.

l The data for physics analysis are "mdst”
l mini data summary table.
l Same structure of a dst, but with much less information
l Input to your analysis package scripts

l The calibration & performance are “cdst”
l calibration data summary table.
l mdst + digits

l At the end of your analysis chain you will write out a "normal"
root file containing a TTree, TNtuple, or histograms

A relevant question
https://questions.belle2.org/question/219

Objects allowed in an mdst:
https://goo.gl/AB15Ud

File types
That basf2 can read and/or create

| Introduction to the analysis package | Belle II Starterkit January 2020

https://questions.belle2.org/question/219
https://goo.gl/AB15Ud

Page 36

mdst are basically root trees containing lists of:

→ Track
→ TrackFitResult
→ V0
→ PIDLikelihood
→ ECLCluster
→ KLMCluster
→ KlId
→ TRGSummary
→ SoftwareTriggerResult
→ (MCParticle)
→ ...

Why use the analysis package?
Can I read the mdst by myself?

The analysis package has modules to convert these
Into more friendly quantities like
→ Particle
→ ParticleList
→ EventShapeContainter
→ TagVertex
→ …

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 37

Can I open the mdst with my own, custom-made macro and run the analysis?

Why use the analysis package?
Can I read the mdst by myself?

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 38

Can I open the mdst with my own, custom-made macro and run the analysis?

NO

Why use the analysis package?
Can I read the mdst by myself?

The mdst contains also the relations bewteen the objects
stored in it, which are not trivially handeled by a stand-
alone root macro. Use always basf2-based code.

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 39

Can I open the mdst with my own, custom-made macro and run the analysis?

NO

Why use the analysis package?
Can I read the mdst by myself?

The mdst contains also the relations bewteen the objects
stored in it, which are not trivially handeled by a stand-
alone root macro. Use always basf2-based code.

Should I write my own module that loops over reconstructed objects like the ECLClusters
and do the analysis (i.e. Belle-style)?

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 40

Can I open the mdst with my own, custom-made macro and run the analysis?

NO

NO

Why use the analysis package?
Can I read the mdst by myself?

The mdst contains also the relations bewteen the objects
stored in it, which are not trivially handeled by a stand-
alone root macro. Use always basf2-based code.

The relation bewteen analysis object (particles) and the
reconstructed objects is not always trivial.
One particle may have many trackFitResults
The ECLClusters are not photons.
Use the modules provided by a detector expert

Should I write my own module that loops over reconstructed objects like the ECLClusters
and do the analysis (i.e. Belle-style)?

| Introduction to the analysis package | Belle II Starterkit January 2020

Now let’s step through an
example

Page 42

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 43

Ro
ot

In
pu

t

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job
Now with the real names for the modules

Pa
rt

ic
le

Lo
ad

er

Pa
rt
icl

eC
om

bi
ne

r

Pa
rti

cle
Lis

tM
an

ip
ul

at
or

Pa
rti

cle
Ve

rte
xF

itt
er

Co
nt

inu
um

Su
pp

re
ss

ion

Pa
rti

cle
Lis

tM
an

ip
ul

at
or

Va
ria

bl
es

To
Nt

up
le

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 44

• First of all, you have make your path.

import basf2

mypath = basf2.Path()
mypath basf2.create_path() # Both are OK!

How to make a path and load a module

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 45

• Call a function to load a module and add it to your path.
• That is all you need to do!

• What is happening in the function?

from modularAnalysis import fillParticleList

fillParticleList('pi+:highMom', 'p > 1', path=mypath)

How to make a path and load a module

| Introduction to the analysis package | Belle II Starterkit January 2020

Load a module to fill a list of particle, ParticleList.
We’ll see details of ParticleList later.

Page 46

The ParticleLoader

pload = register_module('ParticleLoader')
pload.param('decayStringsWithCuts', [('pi+:highMom', 'p > 1')])
mypath.add_module(pload)

An analysis module which loads particles

| Introduction to the analysis package | Belle II Starterkit January 2020

fillParticleList('pi+:highMom', 'p > 1', path=mypath)

• The function wraps these steps in a line.
• Of course, you can write them by hand.

• But quite quickly scripts become unreadable

Page 47

The ParticleLoader

pload = register_module('ParticleLoader')
pload.param('decayStringsWithCuts', [('pi+:highMom', 'p > 1')])
mypath.add_module(pload)

An analysis module which loads particles

| Introduction to the analysis package | Belle II Starterkit January 2020

• The procedure is same no matter what module you want in path.
• "Register" the module you want
• Set "param"eters to the module
• "Add" the module to you path

Page 48

• At the command line:

$ basf2 -m
$ basf2 -m ParticleLoader

Take a look at
B2T_Basics_1_GettingHelp.ipynb
on jupyterhub

Q: Can you find the source code for ParticleLoader?
What do you notice about the C++ class name? How does this compare to
the module name?

How to find module documentation
In general

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 49

• Functions such as fillParticleList are found in <package>/scripts/*.py
• The script that you will probably use a lot is analysis/scripts/modularAnalysis.py

analysis/scripts/modularAnalysis.py
from modularAnalysis import fillParticleList
fillParticleList('pi+:highMom', 'p > 1', path=mypath)

analysis/scripts/vertex.py
from vertex import fitVertex
fitVertex('K*0:myKst', conf_level=0.0, path=mypath)

Wrapper functions

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 50

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job
import basf2
from modularAnalysis import inputMdst

mypath = basf2.Path()
inputMdst('default', '/path/to/input.mdst.root', path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 51

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job
from modularAnalysis import fillParticleList

fillParticleList('pi+:highMom', 'p > 1', path=mypath)
fillParticleList('K+:highMom', 'p < 1', path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 52

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job

from modularAnalysis import reconstructDecay
reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 53

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job

from modularAnalysis import reconstructDecay
reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

You can probably guess what this means already. But don't worry, we'll
discuss the DecayString a bit later…

Page 54

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job

from modularAnalysis import applyEventCuts
applyEventCuts('nTracks < 10', path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 55

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job

from vertex import fitVertex
fitVertex('K*0:myKst', conf_level=0.0, path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 56

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job

from modularAnalysis import buildRestOfEvent
buildRestOfEvent('K*0:myKst', path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 57

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job

from modularAnalysis import cutAndCopyLists
cutAndCopyLists('K*0:hiP', 'K*0:myKst', 'p > 1.0', path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 58

Lo
ad

 m
ds

t mdst
objects →
final state
particle
lists

Combine
particles

Do some
vertex
fitting

Do some
selection

Calculate
complicated
variables

Write info
about
selected
particles

Do some
more
selection

mdst.root histos.root

DataStore

mdst
objects

ParticleList new
ParticleList(s) selected

ParticleList

vertices variables
dataobject

final list of
candidates

A typical path for an analysis job

from modularAnalysis import variablesToNtuple
variablesToNtuple('K*0:hiP', ['p', 'M'], path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 59

#!/usr/bin/env python3
-*- coding: utf-8 -

import basf2
import modularAnalysis as ma

create a path
mypath = basf2.Path()

input mdst file
ma.inputMdst('default','inputMdstFile.root', path=mypath)

PUT YOUR CODE HERE

process the events
basf2.process(mypath)
print out the summary
print(basf2.statistics)

A template steering script

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 60

#!/usr/bin/env python3
-*- coding: utf-8 -

import basf2
import modularAnalysis as ma

create a path
mypath = basf2.Path()

input mdst file
ma.inputMdst('default','inputMdstFile.root', path=mypath)

PUT YOUR CODE HERE

process the events
basf2.process(mypath)
print out the summary
print(basf2.statistics)

A template steering script

Q: what does 'default' mean?

What is the argument called?
Can you find the documentation?
Is there a questions post?

| Introduction to the analysis package | Belle II Starterkit January 2020

Candidate/particle based
analysis

Page 62

Before we get started, here’s this diagram again

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 63

l The datastore contains the dataobjects
l At the level of analysis, the main dataobject is: ParticleList

You can take a look at examples in
<package>/dataobjects

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 64

Event based analysis
frameworks
Babar, ATLAS, ILC

Particle/candidate
based analysis
frameworks
LHCb, Belle II

Particle-based paradigms
In the wild

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 65

• Take particle lists
• Build up decay parents from daughters
• Make candidates for your decay of interest
• Filter/cut/keep.

• You might have more than one candidate per event.
• We deal with this after the fact.
• This is fine. I promise.
• https://arxiv.org/abs/1703.01128

Particle-based analysis

| Introduction to the analysis package | Belle II Starterkit January 2020

https://arxiv.org/abs/1703.01128

Page 66

• A common representation of all particle types
• Charged: e / µ / π / K / p / d [built up from track + hypothesis]
• γ [built up from ECLClusters + !Track]
• K0L, n [built up from KLMlusters + ECLClusters + !Track]
• K0S, Λ0, γ [built up from V0 (2 tracks)]
• Composite particles: π0 / K0S / D / B [built up from combinations]

• Data members of the class are common to all particle types: mass, momentum, position, PDG
code, …

• Information which is only relevant to certain kinds of particle is saved in separate analysis
package dataobjects and accessible by relations.
• e.g. ContinuumSuppression
• …. FlavorTaggerInfo

The Particle class
It’s not crucial to understand the details

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 67

• A common representation of all particle types
• Charged: e / µ / π / K / p / d [built up from track + hypothesis]
• γ [built up from ECLClusters + !Track]
• K0L, n [built up from KLMlusters + ECLClusters + !Track]
• K0S, Λ0, γ [built up from V0 (2 tracks)]
• Composite particles: π0 / K0S / D / B [built up from combinations]

• Data members of the class are common to all particle types: mass, momentum, position, PDG
code, …

• Information which is only relevant to certain kinds of particle is saved in separate analysis
package dataobjects and accessible by relations.
• e.g. ContinuumSuppression
• …. FlavorTaggerInfo

The Particle class
It’s not crucial to understand the details

| Introduction to the analysis package | Belle II Starterkit January 2020

Q: what is the name of the module to combine particles?

Q: which things on this slide are dataobjects?

Page 68

l A group of all particles and anti-particles that belong together logically.
l e.g. K*0 s (decaying to K± and π∓ with invariant mass in a certain window)

l Can only store particles of the same PDG code (can be different decay modes).
l Doesn’t have ownership of the Particle objects.
l ParticleList is the dataobject on which analysis modules operate.

l The physics-performance group provides Standard Particle Lists for which quality benchmarks
exist, and systematics will be provided.

l Currently you may need to optimize selection criteria of ParticleLists by yourself.
l This will be really recommended to use in future.

ParticleList

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 69

l At each stage we build relations
between the dataobjects

l Like vertex information,
ContinuumSuppression
→ all related to Particles

l Particles themselves related to primitive
mdst objects (clusters, tracks)

Data objects: Particle class

7

Particle class is a common representation of all particle types
• final states particles detected at Belle II

• charged e/μ/π/K/p reconstructed as Tracks
• γ reconstructed as ECLClusters
• Klong reconstructed as KLMClusters in the ECL/KLM

• kinematically reconstructed (composite) particles
• π0, Ks, D, B, ...

Private members of the Particle are limited to only those which define a particle and are
common to all particle types (momentum, position, PDG code, covariance m., …).
All other information which exists and is relevant only for certain types of particles is
saved in the independent data-objects accessible via BASF2 Relations:

• ContinuumSupression (various FW moments, angles, …)
• FlavourTaggerInfo
• ExtraInfo (any user-defined floating-point value identified by a string key)

Some more details on Particles, ParticleLists and Relations

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 70

Fill a ParticleList
There are two possible ways to fill a list of stable* particles

Q: What is a stable particle in this context?

import modularAnalysis as ma

ma.fillParticleList('pi+:highMom', 'p > 1', path=mypath)

1) fill it by hand

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 71

import modularAnalysis as ma

ma.fillParticleList('pi+:highMom', 'p > 1', path=mypath)

Fill a ParticleList
There are two possible ways to fill a list of stable* particles

1) fill it by hand

evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl

Particle name.
Tells basf2 if the list has to be created from tracks, ELCClusters, KLMClusters or V0
Must given in evt.pdl (or b2help-particles)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 72

import modularAnalysis as ma

ma.fillParticleList('pi+:highMom', 'p > 1', path=mypath)

Fill a ParticleList
There are two possible ways to fill a list of stable* particles

1) fill it by hand

Label name.
Used to distinguish different lists of the same particle type: you choose the name.
(But maybe call it something helpful)

Particle name.
Tells basf2 if the list has to be created from tracks, ELCClusters, KLMClusters or V0
Must given in evt.pdl (or b2help-particles)

evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl
| Introduction to the analysis package | Belle II Starterkit January 2020

Page 73

import modularAnalysis as ma

ma.fillParticleList('pi+:highMom', 'p > 1', path=mypath)

Fill a ParticleList
There are two possible ways to fill a list of stable* particles

1) fill it by hand

Label name.
Used to distinguish different lists of the same particle type: you choose the name.
(But maybe call it something helpful)

ParticleList name
Same label name can be set to
another particle name.
e.g. pi+:highMom, K+:highMom

Particle name.
Tells basf2 if the list has to be created from tracks, ELCClusters, KLMClusters or V0
Must given in evt.pdl (or b2help-particles)

evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl
| Introduction to the analysis package | Belle II Starterkit January 2020

Page 74

import modularAnalysis as ma

ma.fillParticleList('pi+:highMom', 'p > 1', path=mypath)

Fill a ParticleList

Label name.
Used to distinguish different lists of the same particle type: you choose the name.
(But maybe call it something helpful)

Selection criteria
Cuts used to select this list. More on this later

There are two possible ways to fill a list of stable* particles

1) fill it by hand

List name
Same label name can be set to
another particle name.
e.g. pi+:highMom, K+:highMom

Particle name.
Tells basf2 if the list has to be created from tracks, ELCClusters, KLMClusters or V0
Must given in evt.pdl (or b2help-particles)

evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl
| Introduction to the analysis package | Belle II Starterkit January 2020

Page 75

import modularAnalysis as ma

ma.fillParticleList('pi+:highMom', 'p > 1', path=mypath)

Fill a ParticleList
There are two possible ways to fill a list of stable* particles

1) fill it by hand

evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl
| Introduction to the analysis package | Belle II Starterkit January 2020

Once you call the function, pi-:highMom is created automatically.
You don’t have to call

ma.fillParticleList('pi-:highMom', 'p > 1', path=mypath)

Page 76

Fill a ParticleList

from stdPhotons import stdPhotons
from stdCharged import stdK

stdPhotons('all', path=mypath) # --> gamma:all
stdK('95eff', path=mypath) # --> K+:95eff

2) Use the standard particles lists with pre-defined names and cuts

First argument will be a label name of the particle list.

There are two possible ways to fill a list of stable* particles

1) fill it by hand

import modularAnalysis as ma

ma.fillParticleList('pi+:highMom', 'p > 1', path=mypath)

evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl
| Introduction to the analysis package | Belle II Starterkit January 2020

Page 77

DecayString
The last of the infrastructure things, I promise

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

• You've already seen the decay string in action.
• Now we can formally describe what this line is doing:

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 78

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

DecayString
The last of the infrastructure things, I promise

• You've already seen the decay string in action.
• Now we can formally describe what this line is doing:

Decay string

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 79

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

DecayString
The last of the infrastructure things, I promise

ParticleList ParticleListParticleList

• You've already seen the decay string in action.
• Now we can formally describe what this line is doing:

Decay string

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 80

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

DecayString
The last of the infrastructure things, I promise

• You've already seen the decay string in action.
• Now we can formally describe what this line is doing:

Arrow
(Indicate K*0 decays to K+ pi-)

Decay string

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 81

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

DecayString
The last of the infrastructure things, I promise

mother arrow daughter0 daughter1 ...

• You've already seen the decay string in action.
• Now we can formally describe what this line is doing:

Decay string

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 82

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

DecayString
The last of the infrastructure things, I promise

Particle name.
Of your composite particle.
Must given in evt.pdl
(or b2help-particles)

evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl

Decay string

• You've already seen the decay string in action.
• Now we can formally describe what this line is doing:

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 83

• You've already seen the decay string in action.
• Now we can formally describe what this line is doing:

• reconstructDecay() : Reconstruct mother particle from daughters with a given DecayString.
List names for daughters must exist already. You can choose a list name of a mother.

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

DecayString
The last of the infrastructure things, I promise

List name that exist alreadyYou can choose this.

Decay string

| Introduction to the analysis package | Belle II Starterkit January 2020

You don’t have to call
reconstructDecay('anti-K*0:myKst -> K-:95eff pi+:95eff', '0.6 < M < 1.0', path=mypath)

Page 84

• Sometimes you will need to select a particle within a decay string.
• This is done by "carat": ^

• You will see this in action in the exercises later.

DecayString
One final thing...

'K*0:myKst -> ^K+:highMom ^pi-:highMom'

| Introduction to the analysis package | Belle II Starterkit January 2020

Physics quantities and the
VariableManager

Page 86

• VariableManager is a place in the analysis package to store variables
• physics quantities: invariant mass, beam-constrained mass, E, p, pT, θ,

ɸ, highest energy in a cluster
• counters: event_number, nhits, i_candidate

• Every variable takes at least a Particle* as input and returns a double
(even integer counters like event_number where this doesn't make much sense)

The VariableManager
It manages variables

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 87

• VariableManager is a place in the analysis package to store variables
• physics quantities: invariant mass, beam-constrained mass, E, p, pT, θ,

ɸ, highest energy in a cluster
• counters: event_number, nhits, i_candidate

• Every variable takes at least a Particle* as input and returns a double
(even integer counters like event_number where this doesn't make much sense)

• You’ve already seen it in python, when we used a cut on “M”.
• This comes from the VariableManager.

The VariableManager
It manages variables

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 88

• At the command line:

• Online, the documentation is software.belle2.org.

Take a look at
B2T_Basics_1_GettingHelp.ipynb on
jupyterhub

Q: What is the beam-constrained mas, 𝑀#$
called in the VariableManager?

Where can I get the documentation?

$ basf2 variables.py

| Introduction to the analysis package | Belle II Starterkit January 2020

https://software.belle2.org/

Page 89

Q: Can you figure out the cut string and code to reconstruct B0 -> K*0 gamma?
Supposing you have already reconstructed K*0:myKst.

import modularAnalysis as ma

ma.fillParticleList('pi+:highMom', 'p > 1', path=mypath)
ma.fillParticleList('K+:highMom’, ‘p > 1', path=mypath)
ma.reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

Q: How can we fill a particle list of gamma?

Have you been listening?

Q: How can we reconstruct B0 from K*0 and gamma?

Q: Can you apply following selection on the B0 candidates?

| Introduction to the analysis package | Belle II Starterkit January 2020

Mbc > 5.2GeV/c2

|�E| < 0.2GeV

Page 90

Aliases
Are awesome and you should use them

• With more advanced variables, we deliberately give them verbose names in the VariableManager.
• It’s important to be clear.

• Some examples:
• cosAngleBetweenMomentumAndVertexVector

• totalPhotonEnergyOfEvent

• trackFindingFailureFlag

• You can also use formula(), abs(), cos() for simple math:
• formula(missingEnergyOfEventCMS/Ecms)

• ...

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 91

from variables import variables as vm
vm.addAlias('cosPVtx',

'cosAngleBetweenMomentumAndVertexVector')

Aliases
Are awesome and you should use them

• For your code, you can make short aliases.
• This makes your offline data more manageable, and can help with code readability.

There is no path here like path=mypath.
The VariableManager exists alongside the path

| Introduction to the analysis package | Belle II Starterkit January 2020

How to get data out

Page 93

There are some modules to store variables.

VariablesTo*
a) VariablesToNtuple
b) VariablesToHistogram
c) VariablesToEventBasedTree

Flat ntuples and histograms
Getting output data

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 94

There are some modules to store variables.

VariablesTo*
a) VariablesToNtuple
b) VariablesToHistogram
c) VariablesToEventBasedTree

Flat ntuples and histograms
Getting output data

from modularAnalysis import variablesToNtuple

from modularAnalysis import variablesToHistogram

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 95

• You want to store physics quantities for one ParticleList from the VariableManager.
• Get an ttree (ntuple) of candidates (one row per candidate).

• Perhaps you just want a quick histogram.
• Candidate information not preserved.

VariablesToNtuple

VariablesToHistogram

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 96

VariablesToNtuple

VariablesToHistogram

... at the end of your script
from modularAnalysis import variablesToNtuple
variablesToNTuple('K*0:myKst', ['M', 'p', 'daughter(0,p)', 'daughter(1,p)'], path=mypath)

process the events
basf2.process(mypath)

... at the end of your script
from modularAnalysis import variablesToHistogram
variablesToHistogram('K*0:myKst',

[('M', 100, 0.7, 1.0),
('p', 100, 0.1, 3.0)], path=mypath)

process the events
basf2.process(mypath)

Daughter’s variables can be stored with daughter(i, variable).
i is the daughter index, i.e. 0 = K+, 1 = pi-.

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 97

VariablesToNtuple

VariablesToHistogram

... at the end of your script
from modularAnalysis import variablesToNtuple
variablesToNTuple('K*0:myKst', ['M', 'p', 'daughter(0,p)', 'daughter(1,p)'], path=mypath)

process the events
basf2.process(mypath)

... at the end of your script
from modularAnalysis import variablesToHistogram
variablesToHistogram('K*0:myKst',

[('M', 100, 0.7, 1.0),
('p', 100, 0.1, 3.0)], path=mypath)

process the events
basf2.process(mypath)

Q: Can you guess what these numbers do?
What is the (python) structure created by the
parentheses?

Daughter’s variables can be stored with daughter(i, variable).
i is the daughter index, i.e. 0 = K+, 1 = pi-.

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 98

Utilities
Helper functions to make daughter’s aliases.

• You can store variables of daughters with daughter(i, variable) in a same ntuple.
• You may also want to short aliases for these variables.

reconstructDecay('K*0:myKst -> K+:highMom pi-:highMom', '0.6 < M < 1.0', path=mypath)

from variables import variables as vm
vm.addAlias('K_M', 'daughter(0,M)')
vm.addAlias('K_p', 'daughter(0,p)')
vm.addAlias('pi_M', 'daughter(1,M)')
vm.addAlias('pi_p', 'daughter(1,p)') # You may want to add more aliases

vars = ['M', 'p', 'K_M', 'K_p', 'pi_M', 'pi_p']
variablesToNtuple('K*0:myKst', vars, path=mypath)

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 99

Utilities
Helper functions to make daughter’s aliases.

• A helper function creates aliases from a list of variables and a DecayString with carat ‘^’.

• All aliases can be checked with printAliases().

import variables.utils as vu
vars = vu.create_aliases_for_selected(['M', 'p', 'px', 'py', 'pz'],

'K*0 -> ^K+ ^pi-')
The function makes aliases for selected particles, for example,
'K_M' --> 'daughter(0,M)'

from variables import variables as vm
vm.printAliases()
[INFO] =========================
[INFO] Following aliases exists:
[INFO] 'K_M' --> 'daughter(0,M)'
...

| Introduction to the analysis package | Belle II Starterkit January 2020

Nomenclature

Page 101

• Experiment (chunk of data-taking ~months).
• Run (chunk of data-taking w/ stable beams ~hours),
• Event.

• TRG the hardware trigger (group, device, DAQ)
• L1 the hardware trigger (used interchangeably)

• SoftwareTrigger / HLT (the softeare trigger)

• basf2 “Belle 2 analysis software framework” “the software”
• gbasf2 “The grid job submission tool” “computing”

Nomenclature
https://confluence.desy.de/
display/BI/Main+Glossary

| Introduction to the analysis package | Belle II Starterkit January 2020

https://confluence.desy.de/display/BI/Main+Glossary

One final thing about Belle vs.
Belle II

Page 103

The Belle II analysis model

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 104

The Belle II analysis model

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 105

The Belle II analysis model

You can also do this part for small tests.

But you should not generate large
samples for your analysis… leave that to
experts

| Introduction to the analysis package | Belle II Starterkit January 2020

Page 106

l Much of the material for these slides (and ideas for how to present it) has been stolen from:
l

l Version 1: Sam (February 2018).
l Version 2: Ilya and Sam (June 2018).
l Version 3: Sam (November 2018).
l Version 4: Umberto (February 2019)
l Version 5: Hannah and Sam (June 2019)
l Version 6: Yo and Ilya (January 2020)

Jake Bennett and Anže Zupanc

Acknowledgements

Versions of this tutorial material

| Introduction to the analysis package | Belle II Starterkit January 2020

