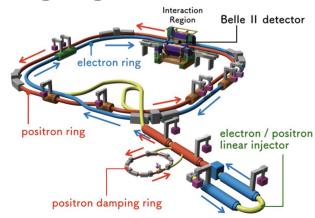
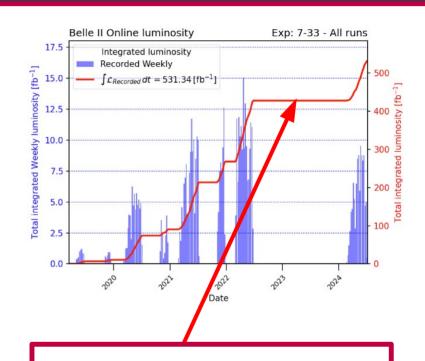


Precision measurement of τ lepton decays at Belle II

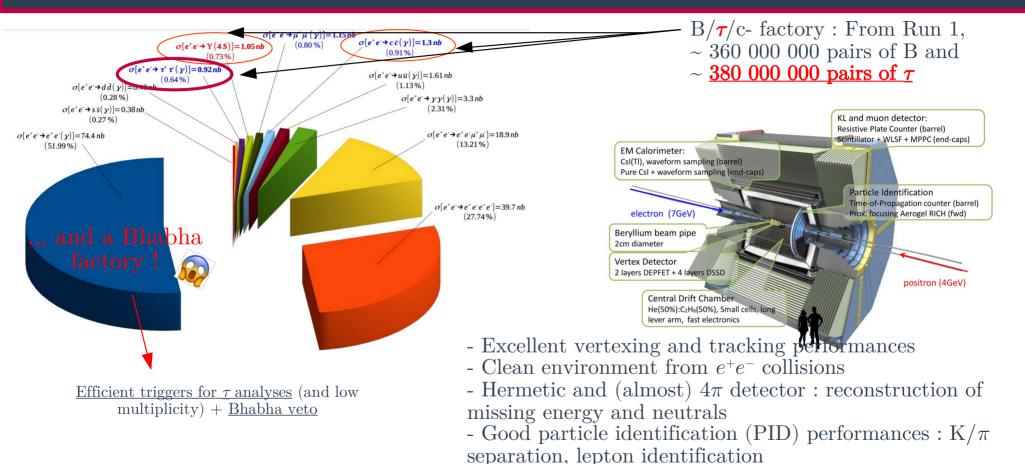
 $\frac{\text{Arthur Thaller}}{28/08/2024} \text{ on behalf of Belle II}$

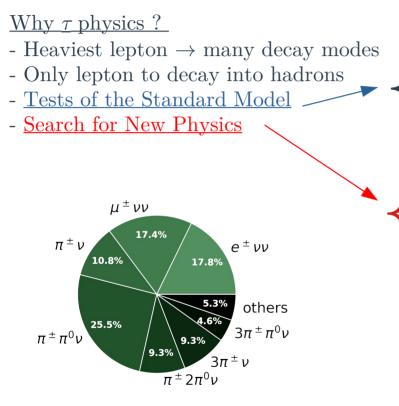

Aix Marseille Univ, CNRS/IN2P3, CPPM



The Belle II experiment: SuperKEKB accelerator

The SuperKEKB e^+e^- collider at 10.58 GeV:

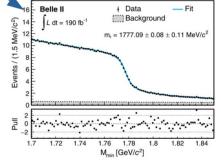

- Upgrade from KEKB, 30-fold increase in luminosity
 - Nano-beam scheme and higher currents
- Record instantaneous luminosity $4.7 \times 10^{34} \, cm^{-2} \, s^{-1}$
- Currently $\sim 530 \text{ fb}^{-1} \text{ recorded}$
 - Run 1 : 424 fb⁻¹ (363 @ Υ (4S) + 61 off-resonnance)
- Targeting 50 ab⁻¹



2022-2024: LS1
Installation of the PXD
(pixel detector) and
accelerator upgrade

Belle II: a multi-purpose experiment

Belle II τ physics program

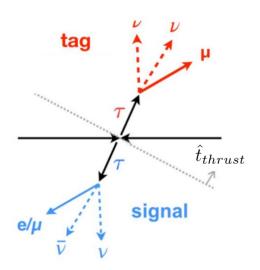

 τ decay modes

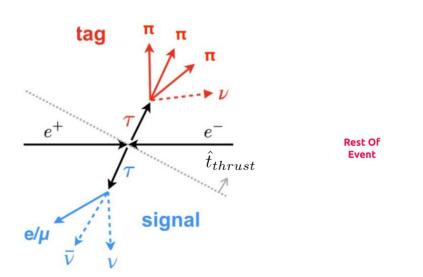
Belle II τ physics program:

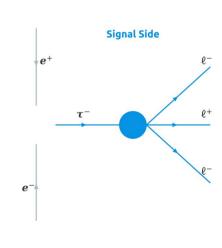
- τ mass measurement (PRD 108,032006)
- τ lifetime measurement
- V₁₁₈ measurement
- <u>LFU test (this talk)</u> CP violation in $\tau \rightarrow K_s^0 \pi \nu$
- LFV searches:
 - $-\tau \to \ell \alpha \; (PRL \; 130, \; 181803)$
 - $-\tau \rightarrow \ell \phi \text{ (arXiv:2305.04759)}$
 - $-\tau \rightarrow \Lambda \pi \text{ (arXiv:2407.05117)}$
 - $\tau \rightarrow \mu \mu \mu$ (this talk)
 - and other modes...

mass: $1777 + 0.08 + 0.11 \,\mathrm{MeV/c^2}$ ↓ Data Background $L dt = 190 \text{ fb}^{-1}$ $m_r = 1777.09 \pm 0.08 \pm 0.11 \text{ MeV/c}^2$

Most precise measurement of the τ




Working with τ 's


 τ are produced by pairs in the e^+e^- collision, <u>back-to-back and boosted</u>! \to We exploit this <u>geometrical separation</u>: define two hemispheres with the thrust axis

$$T = \max_{\hat{\mathbf{t}}} \left(\frac{\sum_{i} \left| \mathbf{p}^*_{i} \cdot \hat{\mathbf{t}} \right|}{\sum_{i} \left| \mathbf{p}^*_{i} \right|} \right)$$

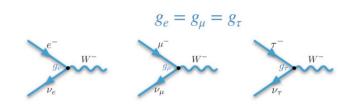
Reconstruct different topologies : 1x1, 3x1 or even untagged!

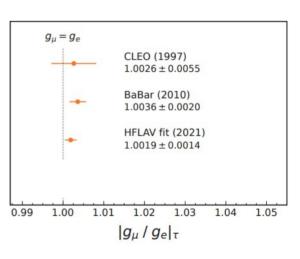
Test of Lepton Flavour Universality

Lepton Flavour Universality (LFU) is a property of the SM: the W gauge bosons are blind to the flavour of the lepton they interact with!

 $\tau \rightarrow \ell \nu \nu$ only through charged current \rightarrow The <u>only difference</u> in the rates comes from <u>the mass of the leptons</u>:

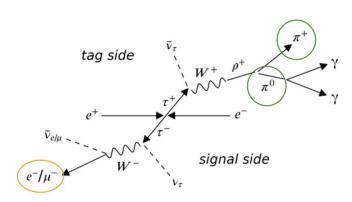
$$R_{\mu} = \frac{\mathcal{B}(\tau^{-} \to \mu^{-} \bar{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \bar{\nu}_{e} \nu_{\tau})}$$

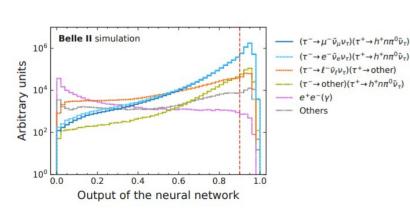

$$(R_{\mu}^{SM} = 0.9726)$$


And the ratio of the coupling is exactly 1 (in the SM) :

$$\left| \frac{g_{\mu}}{g_e} \right|_{\tau} = \sqrt{R_{\mu} \frac{f(m_e^2/m_{\tau}^2)}{f(m_{\mu}^2/m_{\tau}^2)}}$$

$$f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$$


New physics potential with contribution from new weak currents (charged and neutral)



LFU test

Even selection <u>using the 1x1 topology</u>:

Signal side is either $\tau^- \to e^- \bar{\nu}_e \nu_\tau \text{ or } \tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$ (identified with PID variables)

Tag side is $\tau^- \to \pi^- \nu_\tau + n \pi^0$: only one charged particle (E_{ECL}/p < 0.8) with 1 or 2 π^0

Leptons restricted to:

- $-1.5 \text{ GeV/c} < p_{\ell} < 5.0 \text{ GeV/c}$
- $47^{\circ} < \theta_{\ell} < 122^{\circ}$ (polar angle w.r.t to the beam axis) to reduce PID systematics

Background rejection performed with a **set of selection** and a **neural network**: total visible energy of the event, transverse missing momentum, tag-side kinematics

94 % purity and 9.6 % signal efficiency

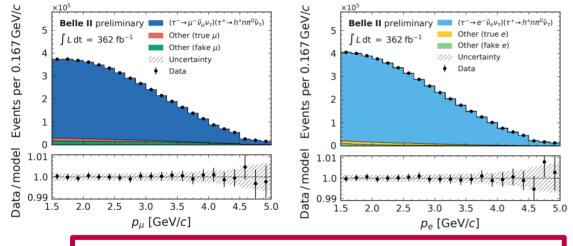
Remaining backgrounds : $e^+e^- \rightarrow \tau^+\tau^-$ with π^\pm mis-id as ℓ^\pm or wrong tag

LFU: systematics

The error is mainly systematic

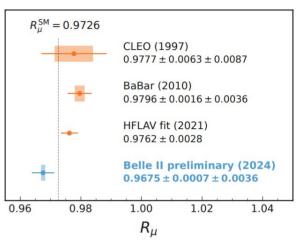
- and dominated by PID uncertainty
 - Efficiency measured with $J/\psi \to \ell^+\ell^-, e^+e^- \to e^+e^-\ell^+\ell^-$ and $e^+e^- \to \ell^+\ell^-(\gamma)$

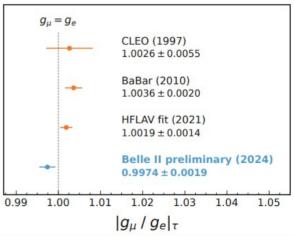
 \rightarrow 99.7% and 93.9% efficiency for electrons and muons


- Fake rate measured with $K^0_S \to \pi^+\pi^-$ and $\tau^\pm \to \pi^\pm\pi^\mp\pi^\pm\nu_\tau$ 0.9% and 3.1% of mis-ID rate for electrons and muons
- Mis-modelling of trigger, evaluated with independent trigger selections

Source	Uncertainty [%
Charged-particle identification:	0.32
Electron identification	0.23
Muon misidentification	0.19
Electron misidentification	0.13
Muon identification	0.0
Imperfections of the simulation:	0.14
Modelling of FSR	0.08
Normalisation of individual processes	0.0
Modelling of the momentum distribution	0.00
Tag side modelling	0.0
π^0 efficiency	0.03
Particle decay-in-flight	0.02
Tracking efficiency	0.0
Modelling of ISR	0.0
Photon efficiency	< 0.03
Photon energy	< 0.0
Detector misalignment	< 0.0
Momentum correction	< 0.0
Trigger	0.10
Size of the simulated samples	0.06
Luminosity	0.01
Total	0.37

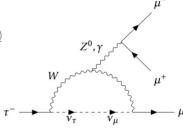
$\mathbf{LFU}: R_{\mu}$ extraction and result


 R_{μ} is extracted with a binned maximum likelihood fit

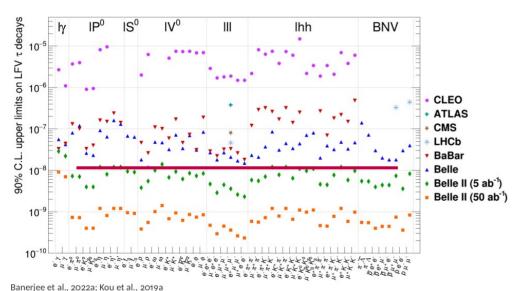

- 21 bins of lepton momentum
- 3 templates (one for the signal, two for the background)

No deviation from the SM World's most precise measurement of $R_{\scriptscriptstyle \mu} {\rm and} \, g_{\scriptscriptstyle \mu}/g_{\scriptscriptstyle e}$

Submitted to JHEP (accepted!) arXiv:2405.14625



LFV : search for $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$


- Charged Lepton Flavour Violation (cLFV) in the Standard Model through weak charged current and neutrino oscillations @ rates $\sim 10^{-55}$

→ Clear prediction : no LFV in current experiments !

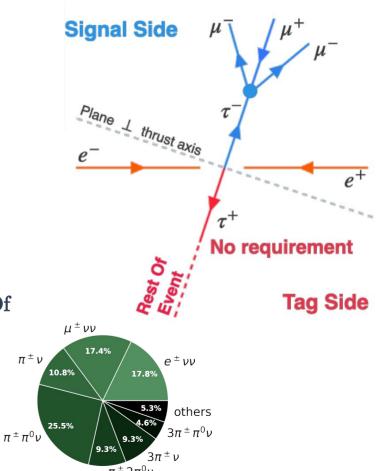
- Various BSM predict LFV at much higher rates $\sim 10^{-8}-10^{-10}$ (e.g leptoquarks for $\tau \rightarrow \ell \phi$, related to anomalies in $b \rightarrow c\tau \nu$)

Physics Models	$\mathcal{B}(au o\mu\mu\mu)$	
SM	$10^{-53} \sim 10^{-55}$	
SM + seesaw	10 ⁻¹⁰	
SUSY + Higgs	10 ⁻⁸	
SUSY + SO(10)	10 ⁻¹⁰	
Non-universal Z'	10 ⁻⁸	

A lot of interest in LFV decays at e^+e^- colliders, with ~ 50 modes : $\tau \to \ell \gamma, \tau \to \ell \phi, \tau \to \ell \ell \ell$, etc.

These are rare decays: it's all about maximizing statistics!

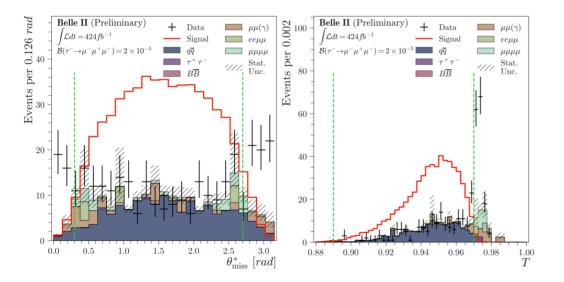
LFV : search for $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$


$$au^{\pm} \! o \! \mu^{\pm} \mu^{\mp} \mu^{\pm}$$
 :

- Almost free from SM background
- Very good resolution on the energy and momentum
- Can be probed by LHC experiments

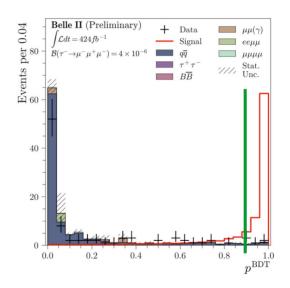
Existing measurements : 2.1×10^{-8} by Belle (Phys.Lett.B687) 2.9×10^{-8} by CMS (Phys.Lett.B853)

<u>Untagged event selection:</u>


- We reconstruct signal candidate by combining three muons
- No explicit reconstruction of the other τ : everything that is not the signal candidate is combined in one unique object called Rest Of Event (ROE)
- Allows to target all the 1 and 3 prong decays of the other τ

$\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$: background suppression

Background suppression


- with a set of selection to remove low multiplicity, mis-modeled background

A BDT classifier with k-folding

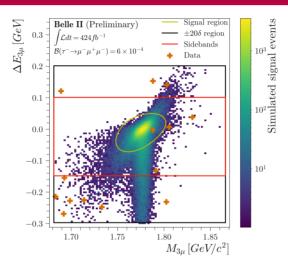
to reject $e^+e^- \rightarrow q\bar{q}$

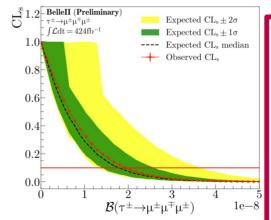
- Rest Of Event kinematics, signal candidate kinematics, missing momentum information....

Final signal efficiency: 20.4% (3X Belle's efficiency:)

$\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$: results

- Poisson counting experiment
- Signal region defined as an ellipse in the 2D plane $(M_{3u}, \Delta E_{3u})$


$$(\Delta E_{3\mu} = E_{beam}/2 - E_{3\mu})$$


$$\mathcal{B}(\tau \to \mu\mu\mu) = \frac{N_{obs} - N_{exp}}{2\sigma_{\tau\bar{\tau}} \cdot \mathcal{L} \cdot \epsilon_{3\mu}}$$

Number of expected background $N_{exp}=0.7^{+0.6}_{-0.5}\pm0.01$ obtained by rescaling the sidebands in the signal region

Observed 1 event in the signal region

No excess is found

Summary of relative systematic uncertainties				
		Uncertainty (%)		
Quantity	Source	Low	High	
	PID	2.1	2.4	
$arepsilon_{3\mu}$	Tracking	1.0	1.0	
	Trigger	0.9	0.9	
	BDT	1.5	1.5	
	Signal region	3.9	2.9	
N_{exp}	Momentum Scale	16	16	
$\mathcal L$		0.6	0.6	

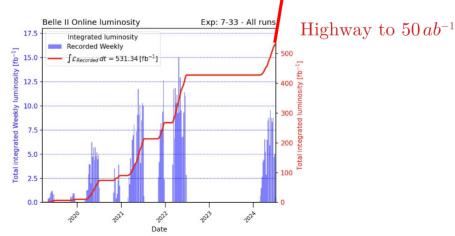
Main uncertainty is statistical!

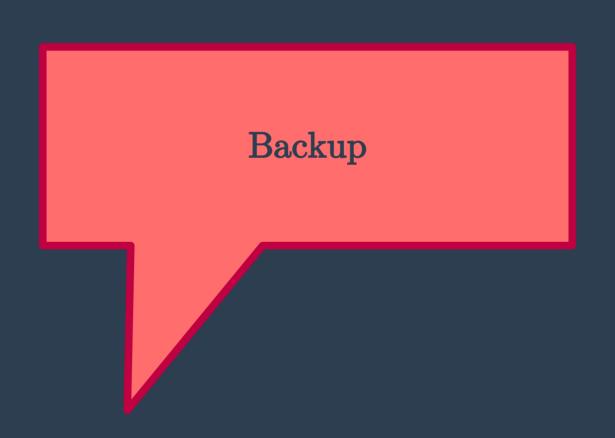
0.3

0.3

90 % CL upper limit on the branching fraction

$$\mathcal{B}$$
 ($au o \mu\mu\mu$) $< 1.9 imes 10^{-8}$


World's best limit!


Accepted by JHEP (arXiv:2405.07386)

Summary

World's leading measurements of τ decays

- LFU is safe : $R_{\mu} = 0.9675 \pm 0.0007_{stat} \pm 0.0036_{sys} \rightarrow \text{Accepted by JHEP, arXiv:} 405.14625$
- No LFV so far : \mathcal{B} ($\tau \to \mu \mu \mu$) $< 1.9 \times 10^{-8} \to \text{Accepted by JHEP}$, arXiv:2405.07386
- Many more exciting results are coming: it's only the beginning for rare τ decay searches at Belle II

