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The L1 CDC Track Trigger System

3.2. Belle II Geometry
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Figure 3.8.: Illustration of the alternating SL configuration in the CDC. Five axial SL
are inclined with four stereo SL with a twist w.r.t. the z-axis.

Central Drift Chamber - CDC

The Central Drift Chamber (CDC) is the main tracking device of Belle II [21, 56]. It
is a wire chamber containing 14336 sense wires oriented closely parallel to the z-axis
with 42240 field wires in between, creating a high voltage electric field. Charged
particles traversing the CDC volume ionize the gas molecules, where the volume is
filled with a special gas mixture of 50 % Helium and 50 % Ethan. The electric fields
accelerate the free electrons from the field wires towards the sense wires, where the
constant pressure in the gas admixture assures an almost constant drift velocity. In
contrast to a Geiger counter, a complete ionization of the gas is avoided by operating
the CDC at a lower voltage; only in the close vicinity of the sense wires, the electrons
pick up sufficient energy to ionize further gas molecules on their way. Due to this
so called Townsend avalanche [57], a measurable amount of electrons arrives at the
sense wires.

The drift time is the difference of the time of the measured signal at a sense wire
relative to the time of the initial ionization. Due to the almost constant drift velocity
of the electrons in the gas admixture, the drift time is an important distance measure
of a track to a wire. This xt-relation is illustrated in Fig. 3.9.

The sense wires are arranged in 56 layers, where six to eight neighboring layers
of sense wires with the same orientation are combined into nine Super Layers (SLs).
Five axial SLs (A) consisting of wires parallel to the z-axis, are inclined with four
stereo SLs of wires with different stereo angles with the z-axis (U, V). In short, the
orientation of the SLs is AUAVAUAVA [21]. Fig. 3.8 shows a sketch of the alternating
SLs and their orientation. The stereo angle ranges of the wires in the stereo SLs are
listed in Tab. 3.3. An illustration of the φ-shifted stereo wire mounting positions and
the relation to the stereo angle is illustrated in Chapter 5 in Fig. 5.6. These stereo
angles enable a 3D track reconstruction with the CDC. Further discussions on the
geometrical symmetry of the wires can be found in Sec. 5.2.3.

The innermost axial SL (A) contains eight axial layers, all other SLs contain six
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The Present Neural Network Track Trigger
2D track + Stereo TS =⇒ z + θ prediction
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Figure 13: E�ciency of STT in comparison to the two-track triggers for the reaction
e+e ! µ+µ ( ) .

last row in fig. 8). Another “irreducible” component comes from the fact that the tracks554

at larger z tend to have smaller polar emission angles in order to traverse su�cient SLs555

of the CDC. The e↵ect of the reduced z-resolution for larger values of z can be seen556

in fig. 14. In this z-correlation plot between reco and neuro tracks one observes “feed-557

down” of the real tracks with large z-values into the z-acceptance interval of the neuro558

tracks. These additional neuro tracks, increasing the L1 track trigger rate, are clearly559

visible in the horizontal acceptance band for neuro tracks at ± 15 cm. In addition, fake560

neural tracks are produced, mainly by an increasing rate of 2D input track candidates,561

formed largely by random background hits. These fake 2D tracks have a fair chance to562

be combined with stereo track segments also originating from background sources. Our563

ongoing studies to improve the z-resolution for the entire z region (±100 cm) with the564

aim to significantly reduce the feed-down and fake tracks e↵ects is the subject of the565

next section.566
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Figure 14: Efficiency of STT in comparison to the two-track triggers for the reaction
e+e−→ µ+µ−(γ), as function of the smaller transverse momentum of the two tracks.

6 Ongoing Developments

We envisage several ways to stabilize the STT and the multi-track z-Trigger for future
running (clearly, we exclude the possibility to simply pre-scale the STT and lose physics).
Since new and more powerful custom-made trigger boards (“UT4”, equipped with Virtex
UltraScale 7 XCVU080/160 FPGAs) have become available to us recently for the z-
Trigger , more resources are now available to overcome the limitations of the presently
installed UT3 trigger boards. This means that the neural network architecture of the
z-Trigger , limited at the moment to one hidden layer with 81 nodes only, can now
be extended to a deep-learning network model, having typically three to four hidden
layers with O(100) nodes each. Furthermore, the track segment finders (aTSF and
sTFS, see fig. 6 above) will also provide information on all other wires within the TSs in
addition to the priority wire: This additional information consists of binary information
of the charge measured on the wires as well as the drift time , although with somewhat
reduced precision in the drift times (32 ns instead of 2 ns). Adding the information from

24

Network reoptimized with Exp. 26 data (NN24)
running since 2024b
=⇒ improved z-resolution

Single-Track-Trigger:
|z|< 15 cm and p > 0.7 GeV (via θ)
(S. Bähr et al., arXiv:2402.14962,
submitted to NIMA)
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Problems with the L1 Neural Network Trigger
High Background: Large number of fake 2D track candidates
=⇒ Fake neuro tracks from combination with background stereo TS

“Feed-Down” effect: Background tracks =⇒ Mapped into acceptance region
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The 3DHough Finder
Third track parameter in addition to ω and φ: Polar scattering angle θ

Track vertex constraint: (x, y, z) = (0, 0, 0)

Particle Gun Single Tracks:
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Clustering Algorithm in 3 Dimensions
=⇒ Fixed Cluster Shape
(motivated by independence of tracks’ pT and θ)

1. Search global maximum in 3D Hough space

2. Fixed cluster shape around maximum

3. Precise determination of ω, φ and θ by weighted
average of cluster cells

4. Clear cells around global maximum
(“Butterfly-Shape” cutout)

5. Search global maximum in remaining 3D Hough
space → 2. (≤ 2 track candidates per quadrant)

Implemented in basf2 (release 9)
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Further Noise Reduction in TS
TSF on UT4: Suppress wires with low ADC count
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Extended Network Architecture
1. 3DFinder track candidates
2. DNN: 4 hidden layers, 60 nodes each
3. Extended input (27 =⇒ 126)
4. Additional classification output node (z, θ, c)

(Yuxin Liu)

Extended Input:
Every wire passing ADC cut in TS

(a) Super Layer 0 (b) Super Layer 1-8
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(Kai Unger, KIT)
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The Displaced Vertex Trigger

Institut für Technik der Informationsverarbeitung

dfd

Displaced Vertex

26.09.2024

[14Patrick Eckler; 2023 Belle II German Meeting

[14]

Kai Unger

(M. Duerr et al,
https://arxiv.org/abs/2012.08595)

Problem with the Neural Track Trigger:
Tracks with displaced vertices only very
inefficiently triggered
Non-pointing tracks: New track segments
required (9-er or 12-er preferred)

Preprocessing

Traditional Track Segment Finder (TSF) bad at detecting shallow tracks → new TSF by Mark Neu

Look Up Table stores patterns indicative of signal tracks

ADC-cut applied after TSF to clean Hough matrix

Institut für Technik der Informationsverarbeitung

The Track Segment Finder must become sensitive to flat tracks

New Track Segment Pattern

Track Segment Finder

26.09.2024

Basic 5-er 9-er 12-er

Kai Unger
Institut für Technik der Informationsverarbeitung

Patterns are trained and saved in 
the look-up table

Patterns can be trained for 
different noise levels. 

LUT-9 and LUT-12 show the best 
results

Track Segment Finder

26.09.2024

[6] Kai Unger et all; „Data-Driven Design of the Belle II Track Segment Finder“ 

2023; Journal of Instrumentation,

[6]

Kai Unger
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Track finding via Hough transform
DVT Algorithm: Require two oppositely charged
particles from same vertex within CDC volume
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Hough Transform: Vertex Hypotheses

CDC partitioned in O(100) “Macro Cells”

Chapter 8

MacroCells

The displaced vertex trigger proposed in this thesis is a standalone system - it only needs
unprocessed CDC data and does not require additional information from other subdetectors.
If two tracks with opposite charges originate from a common vertex, the DVT should trigger
the event and output rough estimates of the vertex position and the track parameters.

Figure 8.1: Configuration of the MacroCells. 387 reference vertices are placed inside the
CDC and the inner region in accordance to the wire structure (light gray circles). In parallel,
they probe if two tracks could have originated in that region. MacroCells are subdivided
into two categories (green and red dots) based on the superlayer types.

65

FPGA: All Hough transforms executed in parallel
=⇒ O(100) track pair candidates!

Figure 8.3: For the same event, Hough transforms are shown from the correct vertex position
(top right panel) and a random, far-away vertex (bottom right panel). The tracks are
obtained from simple peak-finding of the Hough matrix and are color coded to match the
peaks.

algorithm, the value of each pixel through which the hit curve passes is increased by one. In
other words, the hit curve has a weight equal to unity. In the modified Hough transform, the
hit curves are first weighted according to their distance to the assumed vertex. Conformal
mapping already necessitates the calculation of the vertex distance so using it to determine
weights does not add any new expensive computations. A weight function in the form of
a 3-bit look-up table is then applied to retrieve the corresponding hit-weight. Generally,
the closer a hit is to the vertex, the higher its weight should be, see figure 8.4. Lastly, the
pixel values in the Hough matrix are incremented by the weight of the hit curve rather than
simply by one. By setting all values in the LUT to unity, the original unweighted Hough
transform can be recovered. The Hough weights used in the final version of the DVT are
listed in table 6.1.

As a second measure, the hit curves corresponding to very close hits (i.e. hits closer

70

Simple maximum search not possible
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Find the Correct Track Pair

Select small set of track pair candidates (O(5))
Method: Reduce Hough matrix to bitmap

Selection of Best Vertices

Hough matrix reduced to bitmap → very fast
calculation

Score is number of hits with small radii divided by
number of hits with large radii

Five vertex assumptions with highest scores are
selected and further processed

III: Optimization: Black & White HT

8

• Initial FPGA implementation for ONE vertex

• Bottleneck: Addition of ~80 1-bit Hough matrices

• Solution: „Black-and-White“ Hough transform

• Entire Hough matrix is only one bit 


• Many more MacroCells fit onto UT4 board 

score ≡ ∑
ω=5

+ ∑
ω=35

− ∑
ω=19

− ∑
ω=20

First Implementation Optimised Version

LUT 1039% 78%

DSP 100% 79%

Wrong vertex assumption Correct vertex assumption
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For each Macro Cell i: Ri = nout/nin
=⇒ sort by Ri , take 5 largest

“Colored” Hough map for the 5 candidates

Figure 9.1: 5-step iterative clustering algorithm in the Hough matrix. The red cells represent
Hough pixels that are part of the cluster. The initial seed (top left panel) is calculated with
a simple peak-finding algorithm and iteratively grown into a cluster. After 5 iterations
(bottom right panel) the process is truncated.

9.2 Cluster Parameters
Using a clustering algorithm instead of a threshold has the benefit that the true position of
the hit-curve intersection can be estimated to much higher accuracy. The position of the
highest peak is discrete due to the binned parameter space and its resolution limited to the
granularity of the Hough matrix. Calculating the center of gravity of the entire cluster, on
the other hand, allows the position to take values independent from the bin width. This
leads to a (Gaussian) track parameter resolution of �(') ⇡ 0.9� and �

�
r
�1

�
⇡ 0.1m�1.1

Note that the track fits used to calculate the resolutions were performed at the known MC
vertices, since the parameters are very sensitive to shifts of the reference vertex. This is
done to illustrate the precision of track finding with the clustering algorithm in principle.
Because of the rotational symmetry in the transversal plane, the ' track parameter is of
no particular interest for the neural network. The curvature, on the other hand, contains
information about the track momentum and is thus a useful variable. The complete set of
variables that are computed for each cluster is the following:

• Track curvature. Simply the 1
r -coordinate of the center of mass.

1the value is given in m�1 because the Hough matrix is linear in curvature, the inverse of the radius

74

Iterative cluster shape algorithm
Calculate 10 cluster parameters, e.g.:
COG, size, orientation . . .
=⇒ Neural network decision (10 × 40 × 1)
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Expected Performance of DVT
Allowed trigger rate of < 1 kHz (Very preliminary optimization)

in simulation of NP3 samples indeed impact efficiency significantly.

Figure 10.5: Efficiency with respect to the transversal vertex displacement for early phase
3 (left) and nominal phase 3 (right). The radial positions of the axial superlayers are
highlighted in light blue and the overall efficiencies marked with the dashed red line.

The reported technical efficiencies do not reflect the physical efficiencies expected for
realistic models with exponential lifetimes. They depend on the performance of the trig-
ger with respect to transversal displacement, shown in figure 10.5, averaged over all data
samples. Transversal displacement is defined as

⇢ ⌘

q
x2vertex + y2vertex, (10.3.1)

ignoring the z-dimension. Especially for large displacements, the efficiency is significantly
improved with respect to the STT, shown in figure 5.3. For nominal phase 3, the neural
threshold must be very strict in order to obtain the assumed allowed rejection rate of 1kHz.
Therefore, the triggered signal events are very precise and patterns in the efficiency crystal-
lize that are washed out in early phase 3 samples. For example, with high backgrounds, a
significant oscillatory behavior of the efficiency consistent with the position of the axial lay-
ers can be observed. Efficiency is worse at the inner edge of axial superlayers and best and
the outer edge. Since the DVT sees only axial wires, hits lie very close to the best MacroCell
only if the decay vertex happens to be located inside an axial superlayer. As outlined in
section 8.2, close hits are problematic and generally cause a bad performance. Therefore, it
is to be expected that the efficiency is higher in stereo superlayers and lower in axial layers.
This is supported by the data. Further, regardless of the background conditions, a drop
in efficiency is observed for displacements beyond approximately 70cm consistent with the
outer edge of the third axial superlayer (67.9cm). At these distances from the IP, only two
more axial layers are left until the edge of the CDC, corresponding to 10 active wires. In
most cases, these are too few to significantly elevate a track from the beam background.

86

Early Phase-3 Nominal Phase-3 Elia Schmidt
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Summary
3D Hough Finder + DNN:

Automatic suppression of tracks outside the
interaction region (candidates implicitly
originate from the IP)
Better immunity against higher backgrounds
Better track segment selection, smaller fake
rate
New network architecture (extended input +
deep networks + classification)
=⇒ better resolution in z and θ
Higher efficiency for low charged multiplicity
events

DVT:

“Standard” neural trigger inefficient for
displaced vertex events
O(100) Hough transforms executed in Macro
Cells in entire CDC volume
Require 2 Hough maxima for tracks with
opposite charge
Correct Macro Cell for 2-track-vertex
selected by neural network

Details on Implementation on UT4 see Kai Unger’s presentation
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Outlook: Training with unbiased data from “fstream”

Compare „f_stream“ with (traditional) „neurotrigger“ 

HLT filtered
(trg data
scaled down
by 256!)

neuro-skim

(36 x HLT)

f_stream

67% of
neuro-skim

36 x
HLT

56% of
neuro-
skim

clear reason why we need f_stream sample strongly
the neuro skim !                                             enhanced by background !

this is ~ 1/2 
of Exp. 33

definitely
enough data
for retraining

Next: 
produce
training files

C. Kiesling, Neuro-Group Meeting, Sept. 17, 2024 4
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Backup
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Preprocessing of the Network Input: Track Finding
Which TS belong to a real track?

TS selection using a two-dimenisonal Hough transformation:

Axial hit in CDC (TS) gets transformed to a curve in parameter (Hough) space

Intersection point yields the track parameters φ and r2d ∝ pT

58 5. 2D Track Finding
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Figure 5.5.: Hough transformation of a circle. There are two crossing points, one for
positive and one for negative curvature. The positive curvature result
corresponds to a track going clockwise around the circle, the negative
curvature corresponds to a track going counterclockwise with opposite
starting direction ϕ0.

x
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Figure 5.6.: Outgoing tracks through a given point correspond to the part of the Hough
curve with rising slope.

60 5. 2D Track Finding

SL 0 SL 2 SL 4 SL 6 SL 8

ϕ0

1
r

Figure 5.7.: Left: Construction of the Hough matrix. The parameter space is covered
with a grid and the number of lines in each cell are counted. Lines from
the same superlayer are only counted once. Right: The Hough matrix as a
histogram. Cells above a given threshold are peak candidates.

a rising slope. The center of the cluster gives an approximation of the crossing point
and can be found by averaging the center coordinates of all cells in the cluster.

Note that the definition of a peak candidate is independent of the surrounding
cells. For example, for a peak threshold of four, a cell with lines from four different
superlayers is a peak candidate even if it is connected to a cell with five lines. This
allows to evaluate all cells in parallel to find peak candidates. To get only local
maxima it would be necessary to check not only direct connections, but also indirect
connections, like neighbors of neighbors. It turns out that the performance does not
improve enough to justify the additional complexity.

Figure 5.8.: Peak candidates are combined to a cluster if they are connected over a
cell edge or over the top right to bottom left corner. Left: The center cell is
connected to the six shaded cells. Right: Two clusters of peak candidates,
not connected to each other. The center of each cluster is marked with a
dot.

Institute for Information Processing Technologies (ITIV)

Integration into CDC Sub-Trigger System

9/15/20

Location in the Trigger system

Neuro z Trigger Status

2D

sTSF

CDC
FEE

aTSF

The Neuro Trigger has been running since January 2021 years with remarkable success.
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Preprocessing for the L1 Neural Network Trigger
From the track finding (Hough transformation) we get: ω = ±1/r2d and φ0

x

y

rSL

r2d

r2d

α

α

φ0

φrel
td

With the TS information

φwire, nwire, rSL, σLR, td,wire

we can calculate:

α = arcsin

(
1
2

rSL

r2d

)

φrel = φwire − nwire ·
(
φ0 − α

2π

)

td = σLR · (td,wire − td,min)
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3DHough: Natural Suppression of Displaced Tracks

Promising results from
Particle Gun single tracks
(zreco ∈ [−100, 100] cm)
The number of found tracks falls
quickly with large |z|

Nreco = 74,775
N2d = 63,206
N3d = 40,738
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Parameter optimization did not sufficiently solve the following problems:

Resource heavy on the hardware, non-deterministic length, difficult to implement

Clusters can get very large =⇒ Very bad resolutions for some tracks

Very high fake rates when using nominal phase-3 background (3 fakes for 1 signal)
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Figure: The cut percentage defines how often (on average) a cell was present in the clusters.
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Cluster Statistics: Average cell weights
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Figure: The average cluster weights (10000 clusters) above a weight of 30: (a) Real tracks with nominal
phase-3 background, (b) Fake tracks from only nominal phase-3 background.

New idea: Fixed cluster shape clustering
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Monte Carlo Single-IP Tracks

10 000 single IP tracks

The efficiency and resolution are high with the fixed volume clustering (plot (c)):

N2d = 9865
σgau = 3.25
µgau = −0.81
σtot = 7.77
µtot = −0.78
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(a) ∆z2d 2DFinder

∆z Gauss Fit

N3d = 9922
σgau = 3.09
µgau = −1.02
σtot = 11.77
µtot = −2.90
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(b) ∆z3d DBSCAN

N3d = 9915
σgau = 2.92
µgau = −0.98
σtot = 4.41
µtot = −1.22
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(c) ∆z3d Fixed Volume
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Nominal Phase-3 Background Studies

Very high fake rates are observed =⇒ Solution: Cut on the number of hit super layers

N = 10,000
µall = 9.19
µuni = 8.79
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(a) Real Tracks

all track segments unique track segments

N = 10,000
µall = 5.81
µuni = 3.49
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(b) Fake Tracks

Background rate per event (10 000 neutrinos):

Clustering minhits minsuper N all
3d

DBSCAN 4 0 29 424
DBSCAN 6 0 11 350

Fixed Volume 5 5 783

Default DBSCAN: 290%

Fixed Volume with minsuper = 5 cut: 6%
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Classifier for Tracks from IP
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