

Near-Time Upgrade of the Neural Network Track Trigger for Belle II

Simon Hiesl

- 3DHough Finder (3DF) + Deep Neural Network Trigger (DNN)
- Displaced Vertex Trigger (DVT)

Members of the Belle II Trigger Group

The L1 CDC Track Trigger System $\approx 2.4 \,\mathrm{m}$ (a) Super Layer 0 (b) Super Layer 1-8 Belle II Hit Priority 5 axial 4 stereo Miss super super layers layers $\approx 1.2 \,\mathrm{m}$ ≈16 cm Planned DVT TSF DVT Stereo TS CDC Merger TSF 2D Finder 3D Tracker Total: Stereo Stereo TS Neuro Tracker $\approx 25 \text{ UT4}$ Axial TS 3DHough + DNN Tracker L1 Trigger Installed 4x4 Trigger Cell ECL Merger Cluster Finding + Energy Sum Pattern Matching TOP Hit KLM Cluster Finding

≈ 5µs after beam crossing

The Present Neural Network Track Trigger

2D track + Stereo TS $\implies z + \theta$ prediction

 \implies improved z-resolution

Single-Track-Trigger: $|z| < 15 \,\mathrm{cm}$ and $p > 0.7 \,\mathrm{GeV}$ (via θ) (S. Bähr et al., arXiv:2402.14962, submitted to NIMA)

Problems with the L1 Neural Network Trigger

Belle II

- \bullet High Background: Large number of fake 2D track candidates \implies Fake neuro tracks from combination with background stereo TS
- ullet "Feed-Down" effect: Background tracks \Longrightarrow Mapped into acceptance region

The 3DHough Finder

Third track parameter in addition to ω and ϕ : Polar scattering angle θ

Track vertex constraint: (x, y, z) = (0, 0, 0)

Particle Gun Single Tracks:

Positive (negative) tracks in upper (lower) ω half plane

 \implies Intersection point yields ω , ϕ and θ (see green circle)

Natural suppression of tracks outside of IP region

Clustering Algorithm in 3 Dimensions

 \implies Fixed Cluster Shape

(motivated by independence of tracks' $p_{\rm T}$ and θ)

- 1. Search global maximum in 3D Hough space
- 2. Fixed cluster shape around maximum
- 3. Precise determination of ω , ϕ and θ by weighted average of cluster cells
- 4. Clear cells around global maximum ("Butterfly-Shape" cutout)
- 5. Search global maximum in remaining 3D Hough space \rightarrow 2. (\leq 2 track candidates per quadrant)

Implemented in basf2 (release 9)

Average Cluster Shape

Further Noise Reduction in TS

TSF on UT4: Suppress wires with low ADC count

⇒ Reduction of fake 3D track candidates

Extended Network Architecture

Belle II

- 1. 3DFinder track candidates
- 2. DNN: 4 hidden layers, 60 nodes each
- 3. Extended input $(27 \implies 126)$
- 4. Additional classification output node (z, θ, c) (Yuxin Liu)

Implementation ongoing (Kai Unger, KIT)

Timo Forsthofer

The Displaced Vertex Trigger

(M. Duerr et al, https://arxiv.org/abs/2012.08595)

Problem with the Neural Track Trigger:

Tracks with displaced vertices only very inefficiently triggered

Non-pointing tracks: New track segments required (9-er or 12-er preferred)

Track finding via Hough transform

DVT Algorithm: Require two oppositely charged particles from same vertex within CDC volume

Hough Transform: Vertex Hypotheses

CDC partitioned in $\mathcal{O}(100)$ "Macro Cells"

FPGA: All Hough transforms executed in parallel $\implies \mathcal{O}(100)$ track pair candidates!

Simple maximum search not possible

Find the Correct Track Pair

Select small set of track pair candidates $(\mathcal{O}(5))$ **Method**: Reduce Hough matrix to bitmap

Wrong vertex assumption

Correct vertex assumption

For each Macro Cell i: $R_i = n_{\text{out}}/n_{\text{in}}$ \implies sort by R_i , take 5 largest

"Colored" Hough map for the 5 candidates

Iterative cluster shape algorithm Calculate 10 cluster parameters, e.g.: COG, size, orientation . . .

 \implies Neural network decision $(10 \times 40 \times 1)$

Expected Performance of DVT

Allowed trigger rate of < 1 kHz (Very preliminary optimization)

Early Phase-3

Nominal Phase-3

Elia Schmidt

Summary

3D Hough Finder + DNN:

- Automatic suppression of tracks outside the interaction region (candidates implicitly originate from the IP)
- Better immunity against higher backgrounds
- Better track segment selection, smaller fake rate
- New network architecture (extended input + deep networks + classification)
 - \implies better resolution in z and θ
- Higher efficiency for low charged multiplicity events

DVT:

- "Standard" neural trigger inefficient for displaced vertex events
- $\mathcal{O}(100)$ Hough transforms executed in Macro Cells in entire CDC volume
- Require 2 Hough maxima for tracks with opposite charge
- Correct Macro Cell for 2-track-vertex selected by neural network

Details on Implementation on UT4 see Kai Unger's presentation

Outlook: Training with unbiased data from "fstream"

Backup

Preprocessing of the Network Input: Track Finding

Which TS belong to a real track?

TS selection using a two-dimensional Hough transformation:

- Axial hit in CDC (TS) gets transformed to a curve in parameter (Hough) space
- Intersection point yields the track parameters ϕ and $r_{\rm 2d} \propto p_{\rm T}$

The Neuro Trigger has been running since January 2021 years with remarkable success.

Preprocessing for the L1 Neural Network Trigger

From the track finding (Hough transformation) we get: $\omega = \pm 1/r_{2d}$ and ϕ_0

$$\omega = \pm 1/r_{\rm 2d}$$
 and ϕ_0

With the TS information

 ϕ_{wire} , n_{wire} , r_{SL} , σ_{LR} , $t_{\text{d,wire}}$

we can calculate:

$$\frac{\alpha}{\alpha} = \arcsin\left(\frac{1}{2}\frac{r_{\rm SL}}{r_{\rm 2d}}\right)$$

$$\phi_{
m rel} = \phi_{
m wire} - n_{
m wire} \cdot \left(rac{\phi_0 - lpha}{2\pi}
ight)$$

$$t_{\rm d} = \sigma_{\rm LR} \cdot (t_{\rm d,wire} - t_{\rm d,min})$$

3DHough: Natural Suppression of Displaced Tracks

- Promising results from **Particle Gun** single tracks $(z_{\text{reco}} \in [-100, 100] \text{ cm})$
- The number of found tracks falls quickly with large |z|

Parameter optimization did not sufficiently solve the following problems:

- Resource heavy on the hardware, non-deterministic length, difficult to implement
- ullet Clusters can get very large \Longrightarrow Very bad resolutions for some tracks
- Very high fake rates when using nominal phase-3 background (3 fakes for 1 signal)

Figure: The cut percentage defines how often (on average) a cell was present in the clusters.

Cluster Statistics: Average cell weights

Figure: The average cluster weights (10000 clusters) above a weight of 30: (a) Real tracks with nominal phase-3 background, (b) Fake tracks from only nominal phase-3 background.

New idea: Fixed cluster shape clustering

Monte Carlo Single-IP Tracks

- 10 000 single IP tracks
- The efficiency and resolution are high with the fixed volume clustering (plot (c)):

Nominal Phase-3 Background Studies

• Very high fake rates are observed \implies Solution: Cut on the number of hit super layers

Background rate per event (10 000 neutrinos):

Clustering	minhits	minsuper	$N_{ m 3d}^{ m all}$
DBSCAN	4	0	29424
DBSCAN	6	0	11350
Fixed Volume	5	5	783

- Default DBSCAN: 290%
- Fixed Volume with minsuper = 5 cut: 6%

Classifier for Tracks from IP

