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Near-Time Upgrade of the
Neural Network Track Trigger for Belle II

Simon Hiesl

e 3DHough Finder (3DF) + Deep Neural Network Trigger (DNN)
e Displaced Vertex Trigger (DVT)
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The L1 CDC Track Trigger System
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The Present Neural Network Track Trigger $

Belle I
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Problems with the L1 Neural Network Trigger 8

e High Background: Large number of fake 2D track candidates Belle II

= Fake neuro tracks from combination with background stereo TS

o “Feed-Down” effect: Background tracks = Mapped into acceptance region
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The 3DHough Finder S

Third track parameter in addition to w and ¢: Polar scattering angle 0 Belle I

Track vertex constraint: (z,y, z) = (0,0,0)

—— Reco Neuro-2d —— Neuro-3d

Particle Gun Single Tracks:
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Positive (negative) tracks in upper (lower) w half plane Natural suppression of tracks

= Intersection point yields w, ¢ and 6 (see green circle) outside of IP region
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Clustering Algorithm in 3 Dimensions $

—> Fixed Cluster Shape Average Cluster Shape I

(motivated by independence of tracks’ pr and 0)

1. Search global maximum in 3D Hough space

0-bin

2. Fixed cluster shape around maximum

3. Precise determination of w, ¢ and 8 by weighted
average of cluster cells T

(a) Complete Cluster (c) Cutout

0

4. Clear cells around global maximum
(“Butterfly-Shape” cutout)

2
3

5. Search global maximum in remaining 3D Hough
space — 2. (< 2 track candidates per quadrant)

Implemented in basf2 (release 9)
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Further Noise Reduction in TS D
TSF on UT4: Suppress wires with low ADC count Belle IT

(a) 6-bin 2: No adccut

—— Vertex Fake Cut = 15 o

Scaled counts
-10%
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— Reduction of fake 3D track candidates
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Extended Network Architecture

D
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1. 3DFinder track candidates Belle II
2. DNN: 4 hidden layers, 60 nodes each o
3. Extended input (27 = 126)
4. Additional classification output node (z, 4, ¢)
(Yuxin Liu) 081
Extended Input: £ %%
Every wire passing ADC cut in TS 3
[
o
0.4 1
(a) Super Layer 0 (b) Super Layer 1-8
. —— 3DF (DNN, z, 6, ¢), c-Cut
Hit 0.2/ — 3DF (DNN, 2,6, c), zCut
- " | — 3DF (DNN, z, 6), z-Cut
Priority 1 Nnoa
Miss 0.0 ,. C-Cut>0.5’: : : :
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Efficiency

Simon Hiesl

Implementation ongoing
(Kai Unger, KIT)
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The Displaced Vertex Trigger
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(M. Duerr et al,
https://arxiv.org/abs/2012.08595)

D
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Belle I

Problem with the Neural Track Trigger:
Tracks with displaced vertices only very
inefficiently triggered

Non-pointing tracks: New track segments
required (9-er or 12-er preferred)

Track finding via Hough transform

DVT Algorithm: Require two oppositely charged
particles from same vertex within CDC volume
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Hough Transform: Vertex Hypotheses

CDC partitioned in O(100) “Macro Cells”
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Find the Correct Track Pair

Select small set of track pair candidates (O(5))
Method: Reduce Hough matrix to bitmap

/z/f, |
j‘l‘f - B .
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® El

W[:ﬂs]
Wrong vertex assumption Correct vertex assumption
For each Macro Cell i: R; = nout/Min
= sort by R;, take 5 largest

D

o

Belle IT
“Colored” Hough map for the 5 candidates

®
Iterative cluster shape algorithm
Calculate 10 cluster parameters, e.g.:
COG, size, orientation ...
= Neural network decision (10 x 40 x 1)
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Expected Performance of DVT off =<

<O

Belle IT
Allowed trigger rate of < 1 kHz (Very preliminary optimization)
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Summary $

Belle IT
3D Hough Finder + DNN: DVT:
o Automatic suppression of tracks outside the e “Standard” neural trigger inefficient for
interaction region (candidates implicitly displaced vertex events
originate from the IP) e O(100) Hough transforms executed in Macro
e Better immunity against higher backgrounds Cells in entire CDC volume
o Better track segment selection, smaller fake e Require 2 Hough maxima for tracks with
rate opposite charge
e New network architecture (extended input + e Correct Macro Cell for 2-track-vertex
deep networks + classification) selected by neural network

— better resolution in z and 6
o Higher efficiency for low charged multiplicity
events

Details on Implementation on UT4 see Kai Unger’s presentation
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Belle I

Outlook: Training with unbiased data from “fstream”
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Backup

pgrade of the Neural Netwo:
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Preprocessing of the Network Input: Track Finding $
Belle IT

Which TS belong to a real track?
TS selection using a two-dimenisonal Hough transformation:

e Axial hit in CDC (TS) gets transformed to a curve in parameter (Hough) space

@ Intersection point yields the track parameters ¢ and rpq < pr

parameter space
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The Neuro Trigger has been running since January 2021 years with remarkable success.
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Preprocessing for the L1 Neural Network Trigger $

Belle I
From the track finding (Hough transformation) we get: ’w = +1/rq and ¢g ‘
y With the TS information
(bwirev Mhwire, TSLs OLR; td,wire
) { we can calculate:
tq ’
. [ 1rsy
%o . o = arcsin| = —
s rsL 2 Tod
T2d ¢
R \ ) 0o — &
N Qrel = ¢Wire — Nwire * ( o )

Foq T

la = OLR - (td,wire - td,min)
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D

3DHough: Natural Suppression of Displaced Tracks o>
Belle IT
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1000
Nreco = 74,775
) Nog = 63,206
. S 800 |- Nij = 40,738
e Promising results from E }
Particle Gun single tracks o, 600
(Zreco € [—100,100] cm) >
o 400 |-
@ The number of found tracks falls ”g
quickly with large |z| ZS 200 -
| | | |

0
—150 —100 —50 0 50 100 150

z [cm]

Simon Hiesl Upgrade of the Neural Network Track Trigger 4/9



S

Belle I

Parameter optimization did not sufficiently solve the following problems:

@ Resource heavy on the hardware, non-deterministic length, difficult to implement

Very bad resolutions for some tracks

nominal phase-3 background (3 fakes for 1 signal)

e Very high fake rates when using
(b) Cut at 20% (c) Cut at 30%

o Clusters can get very large —

(a) Cut at 10%

6-bin

6-bin

w-bin

0.6 0.8

10t

Figure: The cut percentage defines how often (on average) a cell was present in the clusters.
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Cluster Statistics: Average cell weights
(b) weight > 30 Belle II

(a) weight > 30

6-bin
6-bin

Figure: The average cluster weights (10000 clusters) above a weight of 30: (a) Real tracks with nominal
phase-3 background, (b) Fake tracks from only nominal phase-3 background.

New idea: Fixed cluster shape clustering
6/9
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Monte Carlo Single-IP Tracks $

Belle IT
e 10000 single IP tracks

@ The efficiency and resolution are high with the fixed volume clustering (plot (c)):
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Nominal Phase-3 Background Studies $

Belle I

@ Very high fake rates are observed = Solution: Cut on the number of hit super layers

Background rate per event (10000 neutrinos):

———all track segments —— unique track segments
Real Tracks b) Fake Tracks . . . .

09(3) e Or( ) Feke Tracks Clustering ‘ minhits minsuper ‘ Nl
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o Fixed Volume with minsuper = 5 cut: 6%
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Classifier for Tracks from IP $

Belle I
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