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We are implementing the GNN ECL trigger algorithm on the
GNN-ETM in parallel to the current ECL trigger algorithm on the
ICN-ETM (parasitically)

The current number of input TCs to the GNN is restricted to 32 due
to hardware restrictions

Algorithm will store predicted clusters and their properties in raw
data but will not be involved in trigger decisions

⇒ Starting to run this in two weeks!
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Current Situation:

The current trigger uses a fast and easy clustering algorithm which returns a cluster as soon as a TC has
a reconstructed energy above 100 MeV
→ Works very well in current conditions, with low(er) beam background levels and big (16 crystal) TCs

For future beam background levels, trigger rates might rise drastically for only beam background
→ Trigger lines have to be prescaled and analyses could lose efficiency

Current trigger algorithm additionally is by design not able to separate overlapping clusters, which can limit
the efficiency for analyses such as e+e− → a (→ γγ) γ

GNN Trigger for the ECL:

Including state-of-the-art algorithms, such as Graph Neural Networks (GNN), in the development of new
triggers can increase trigger efficiency greatly

Implementing the GNN Trigger algorithm now (for Run Period 2024c, parasitically) will help us understand
the opportunities and challenges without changing the current trigger algorithm
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Object Condensation (OC): One-shot algorithm for both detection
and reconstruction of clusters (arXiv:2002.03605)

Irregular geometry and varying input sizes in the ECL
→ Graph Neural Networks (GNN)

OC algorithm is adaptable to different beam backgrounds and
can be (for future upgrades) adapted to different inputs

Implementation on FPGA requires max. 2 GravNet blocks
and reduction of linear layers

Replacement of Euclidean distance for k-Nearest-Neighbour
algorithm with Manhattan distance to reduce needed
resources

Inputs and weights additionally need to be quantized for
actual implementation
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As training inputs I am using only TSIM TCs with timing within the TRG timing window (256ns) given by
basf2

The TC energy and timing is taken from TSIM, while MC truth information is taken from ECL simulation

The target for training is offline ECL showers due to two reasons:
Anything we cannot reconstruct offline will also be not a target for online reconstruction
Eventually, ECL showers can allow us to train on data to reduce MC effects in the training sample

The current training is done on a 50/50 mixture of two categories of simulated events to create an
unbiased training sample:

1.) 1-6 photons with energy 0.05-7 GeV, additionally adding low energetic photons following the background
distribution (more detail next slides)

2.) 1-6 photons with energy 0.05-7 GeV, additionally adding two photons that have a small opening angle

Input Features: Reconstructed energy per TC, timing (calibrated to highest-energetic TC per event), x, y, z
position of TC from lookup table
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Current hardware restrictions on
available UT4 board allow a
maximum of two GravNet layers

Additionally, we optimize the network
further to make implementation on
FPGA easier/possible:

Replacement of euclidean
distance with Manhattan
distance for
k-Nearest-Neighbour algorithm
Removal of linear layers and
unnecessary calculations, as far
as possible
Quantization of inputs and
training weights

Figure: Marc Neu

Distance LUTS FF BRAM DSP Total Power Frequency
Euclidean 13.79% 9.24% 6.96% 30.64% 6.514W 256.4 MHz
Manhattan 14.87% 9.18% 6.96% 1.28% 4.468W 256.4 MHz

Table: Timo Justinger
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Original network has been designed by
broad hyperparameter optimisation
(number of GravNet blocks was set to 2)

The evaluation shown here is still on CPU
and with non-quantized weights and inputs

The network with reduced amount of linear
layers (=small network) only has around
8000 tunable parameters, which is a
reduction of factor 2 in free parameters

Using Manhattan distance also does not
impact network performance significantly
but has great impact on FPGA
implementation

Implementation still has 200% DSP usage
with a quantization of 16bit, higher
quantization or further reduction is
necessary
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Efficiency: N(corr. pred.) / N(true)

True are all ECL showers visible on TRG level, correctly predicted are
all GNN/TRG clusters truthmatched to a shower
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Beam background already contains a lot of
low-energetic showers

If I use simulated samples for training
where the energy distribution for the signal
photons is uniform between 0.05 and 7
GeV, the low-energetic ECL showers are
dominantly originating from beam
background
→ Bias for network performance for
signal/background classification

Therefore I model beam background energy
and number of showers to generate a
(mostly) unbiased training sample

A signal shower is defined analogous to the
basf2 MC matching definition for clusters
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Network can classify signal/background clusters on training data with high efficiency and high beam
background rejection
Signal definition has to be carefully defined, especially for charged particles (work in progress)
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Performance of Signal Classifier
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Efficiency on charged particles might differ
due to different signatures

Preliminary tests on 10k mixed BB̄ events

Due to the restriction of max. 6
TRGECLClusters in the order Barrel →
Forward Endcap → Backward Endcap, for
both algorithms I compare only events that
have ≤ 6 Target ECL Showers in the barrel

If a Target ECL Shower has ≥ 30% energy
deposition by an MC particle, I match it to
that MC particle

Efficiency for OC is very high over all pt bins

Efficiency for OC is also consistently high
when including all detector parts and all
Target ECL Showers
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Efficiency: N(corr. pred.) / N(true)

True are all ECL showers visible on TRG level, correctly predicted are
all GNN/TRG clusters truthmatched to a shower
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Implementation is done by Marc with great
support from the TRG group, especially
Unno-san

Due to their support, we already have an
interface between ICN-ETM and GNN-ETM as
well as integration of the GNN-ETM channel in
Belle2Link DAQ

Currently debugging the interface between the
GNN-ETM and Belle2Link in local run
configuration

The GNN Implementation is currently under
development, we expect a first full
implementation on hardware in approx. 2 weeks,
first quantized training will be ready for
implementation next week

Preprocessing is implemented and tested, ready
to be integrated into the GNN-ETM firmware in
the next 2 weeks

Figure: Marc Neu
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Implementation for new GNN ECL Trigger algorithm is planned
for this run period, Marc is working on hardware realization

Preprocessing, interface between ICN-ETM and GNN-ETM
and Belle2Link DAQ is already done

Optimization of network for hardware implementation by
reducing network size and removing difficult calculations, such
as euclidean distances

Work Plan:
Network weights have to be quantized to 16bit, partially 8bit
quantization, finishing until Monday

First full implemented model will be ready in approx. 2 weeks

Next step is then evaluating on the new raw data and
comparing performance on physics data
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Full BB Efficiency for Different Particles
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