

B2GM TRG parallel session VTX Trigger Studies

Mattéo Maushart | IPHC | October 4th 2024

I. What is the VTX ?

> VXD replacement

<u>Current inner vertex</u> <u>detector (VXD)</u>

Future inner vertex

detector (VTX)

- PXD : 2 Layers; pixels (DEPFET technology)
- SVD : 4 Layers; strips

Current Geometry : 5 Layers; pixels (MAPS technology)
Under study: 6 Layers; pixels (same technology)

II. What is OBELIX ?

- Stands for Optimized Belle II pixel sensor
 - Unique sensor type for all VTX Layers

	Design
Total Area (Sensitive Area)	5.68 cm² (4.53cm²)
Pixel matrix	896 x 464
Pixel pitch	33 µm
Integration Time	50 to 100 ns
Trigger Delay	> 10 µs
Macropixel Matrix	8 x 1
Trigger Rate	30 kHz

III. What provides OBELIX?

IV. TRG expectations on VTX TRG

- 2 VTX TRG modes :
- Standalone :

V. Schematic of VTX TRG

VI. Fast Track Recognition Algorithm : LUT

- Look-Up Table (LUT) logic:
 - 1. Pattern table : Stored physical track patterns from simulation
 - 2. Detector/Table pattern comparison : Triggered track if recognized from the table

VII. Macropixel segmentation

- A major problem:
 - > 896 x 464 pixels per sensor
 - ➤ ≈ 1,000,000,000 pixels in the detector
 - □ An excessive number of combinations
- Solution :
 - Macropixel : reduced spatial accuracy
 - 8 x 1 Macropixels per sensor
 - Considerable reduction in the number of combinations
 - ✓ Reduction of the Pattern table size
 - Faster to search through a small table

VIII.Track Trigger Transmission in practice

IX. What is a pattern ?

Bitword of length (Nbr of Mpx / Sensor), composed of each Sensor TTT Output
 Current Geometry : 2552 Sensors ; Choice : 8 Mpx per Sensor 20416 MpxID

• LUT comparison : Online hits $00110110 \cdots 011 \cdots 010 \cdots 110 \cdots 011$ A pattern of the table $00000010 \cdots 010 \cdots 010 \cdots 010 \cdots 010$

• A pattern contains only 1 hit per Layer

> The number of hits in a pattern depends on how many layers were used to create the table

> Exemple : Above we used 4 out of 5 Layers to create the table; thus there are 4 hits per pattern

XI. How to conduct a study ?

- Prerequisite : i) VTX Geometry, ii) Number of Layers to use
- 1. Create the table
- 2. Create the test sample
 - 1. Only Signal : Efficiency, Z-vertex acceptance, (θ, ϕ) precision
 - 2. Only BG : Fake Trigger Rate
 - 3. Signal + Overlay BG : More realistic case to mesure all features
- 3. Analyse the LUT Output to access all features

XII. The table creation

Currently :
– μ^{\pm} Particle Gun with following characteristics

Production point	(x = 0, y = 0, z = 0)
Range of momentum	$0.2 \le p \le 3.0$
Range of $ heta$ angle	$17^{\circ} \leq \theta \leq 150^{\circ}$
Range of $arphi$ angle	$0^{\circ} \leq \varphi \leq 360^{\circ}$

- Not so simple ; take into account :
 - Reentering particles:

Charge deposition :

XII. The table creation

- Charge deposition issue : consider the clusters
 - Registering all the patterns out of a cluster is an imperfect temporarily solution
- In an event, if the same cluster occurs, the LUT will have recognized N different tracks from the same particle

Only 1 particle but will be counted as 2 tracks

> Need for a Clusterizer to get rid of this issue, maybe after the pattern matching

XIII.1st Study case (March-June)

VTX Geo : 5 Layers, Layers used for LUT : L3, L4 and L5

- 1. Table generation
 - \succ 10⁶ particles => With 3 Layers, 80k unique patterns
- 2. Test samples (Single track events) :
 - 1. Efficiency : $10^5 \ \mu^{\pm}$ with same characteristics as table
 - 2. Z-vertex Acceptance : $10^5 \ \mu^{\pm}$ with $z \in [-10, 10]$ cm
- 3. Figure of Merits

> Global efficiency : $\frac{Nbr \ patterns \ recognized}{Nbr \ patterns \ simulated}$ > 95 %

> Z-vertex Acceptance : |z| < 5 cm

XIV. 1st Study case Results

+ Efficiency Test Sample : $10^5~\mu^\pm$, identical to table event characteristics

XIV. 1st Study case Results

- Acceptance test sample : $10^5 \ \mu^{\pm}$, with $z \in [-10, 10] \ cm$
- Accuracy test sample : $10^5~\mu^\pm$, identical to table event characteristics

XV. 2nd Study case (July-August)

VTX Geo : 5 Layers, Layers used for LUT : 3 outers, 4 outers, All Layers

- 1. Table generation
 - Reused from 1st Study case
- 2. Test sample :
 - 1. Fake Trigger Rate : 10^6 events; 1 event = 100 ns, V1/V2/V3 BG Scenarios
- 3. Figure of Merits
 - ➤ Fake Trigger Rate : <30kHz</p>

XVI.Background Scenarios

- 3 BG Scenarios considered at $\mathcal{L} = 6.0 \times 10^{35} cm^{-2} s^{-1}$ in CDR :
 - V1/V2/V3 : Optimistic/ Intermediate/ Conservative

XVII. 2nd Study case : Initial Results

Initial Fake Trigger Rate

XVII. 2nd Study case Initial Distributions

BG V1 Distributions

BG V3 Distributions

XVII. 2nd Study case Test Cut Results

• Cut : « Number of Track > 2 & p_T > 1 »

XVIII. Conclusion

- Encouraging results that need to be consolidated :
 - -Clean the 1st Study case
 - -Improve the BG Analysis Code
 - Better understanding for more precise cuts
 - (Clusterizer development)
- What's next ?
 - Begin PhD physics analysis
 - Less work on VTXTRG (but still during the TRG Expert Shift)
 - Conduct same studies with other geometries and Mpx Segmentations