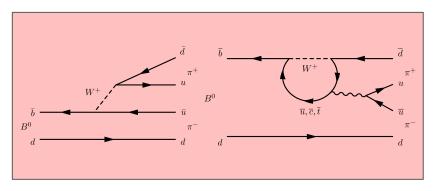
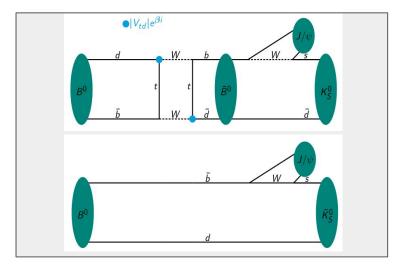

Time-dependent CP violation measurements in radiative penguin decays of B mesons at Belle and Belle II

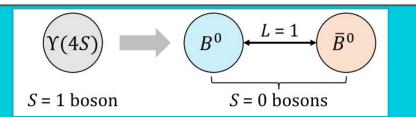
Rishabh Mehta,
On behalf of Belle II Collaboration

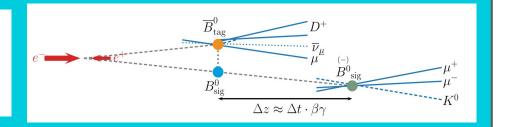

CP violation in B⁰ decays


Interference between two paths (amplitudes).

$$\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}$$

The CKM quark mixing matrix

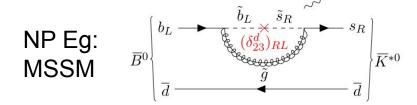

Direct CP Violation (C)

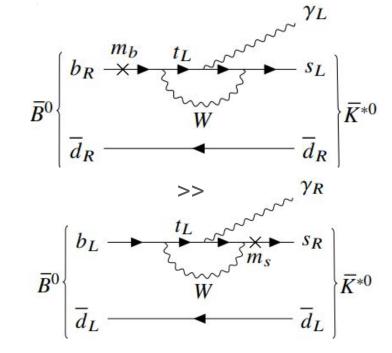

Mixing Induced CP Violation (S)

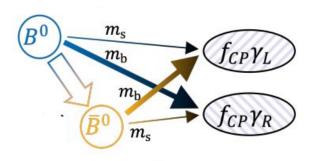
TDCPV analyses in B factories

Pair produced neutral BBbar mesons are in coherence until one of them decays.

Boosted B mesons in the lab frame: easier tag and signal side vertex resolution.

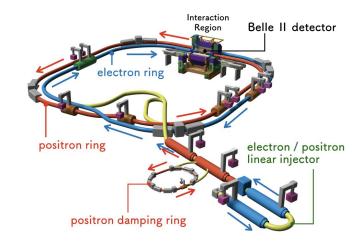

Decay time distribution encodes CP violation parameters.

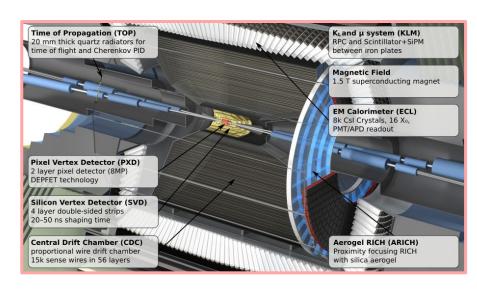

$$\mathcal{A}_{\mathrm{CP}}(\Delta t) = \frac{N(\underline{B}^0 \to f_{\mathrm{CP}}) - N(\overline{\underline{B}}^0 \to f_{\mathrm{CP}})}{N(\underline{B}^0 \to f_{\mathrm{CP}}) + N(\overline{\underline{B}}^0 \to f_{\mathrm{CP}})} (\Delta t) = (S_{\mathrm{CP}} \sin(\Delta m_d \Delta t) - C_{\mathrm{CP}} \cos(\Delta m_d \Delta t))$$


ß

Radiative Penguin Decays

- → Proceeds via one-loop diagrams at the lowest order.
- → Final state not a proper CP eigenstate due to photon polarisation.
- → S_{CP} helicity suppressed as b_L→s_Rγ_R is ms /mb suppressed compared to b_R→s_L γ_I
- → NP processes could contribute to a significant deviation in S_{CP}.


SuperKEKB and Belle II


SuperKEKB: an asymmetric e⁺e⁻ collider with electron (positron) beam energies at 7 (4) GeVs.

- → World record for the highest instantaneous luminosity!
- → Total Y(4s) data: 365 fb⁻¹

Belle II: detector built around the interaction point of the two beams.

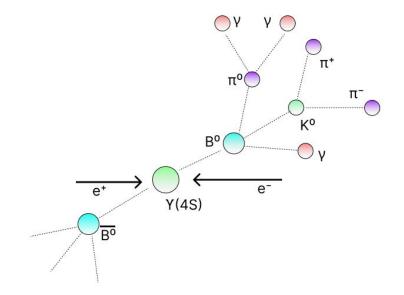
- → ~2x impact parameter resolution as compared to Belle
- Better reconstruction efficiency of neutrals eg K_s , π^0 etc.

$K_s \pi^0 \gamma$: Introduction

- → b →sγ decay, proceeds via one loop FCNC process at the leading order.
- → C_{CP} suppressed by $(m_s/m_b)^2$, while S_{CP} suppressed by (m_s/m_b) .
- \rightarrow Largest branching fraction (K* γ) amongst radiative penguin modes and hence highest potential for NP search.
- → Theoretical uncertainty of a few % due to charm loop effect.
 - \bullet SSM = (2.3 ± 1.6)%

$K_s\pi^0\gamma$: Event Selection

K selection:

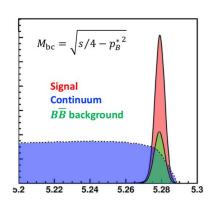

- Use two charged tracks with pion mass hypothesis to reconstruct a Ks.
- Use BDT classifiers for removal of fake candidates.

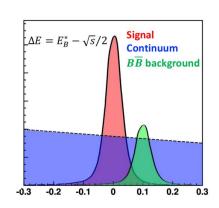
π^0 selection:

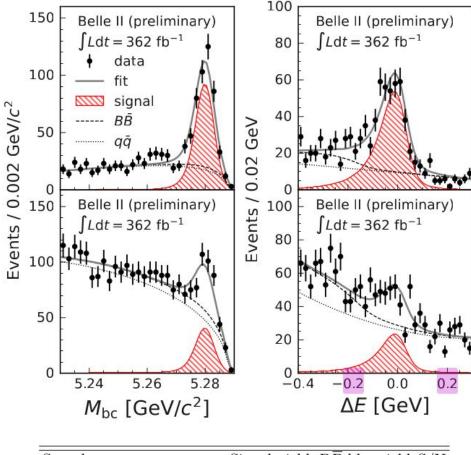
- Use two photon clusters from ECL to form the pi0 candidate.
- Use BDT classifier for removal of fake candidates.

Prompt γ selection:

- Use the highest energy photon cluster from ECL.
- Use BDT based classifier for removal of pi0/n daughters.

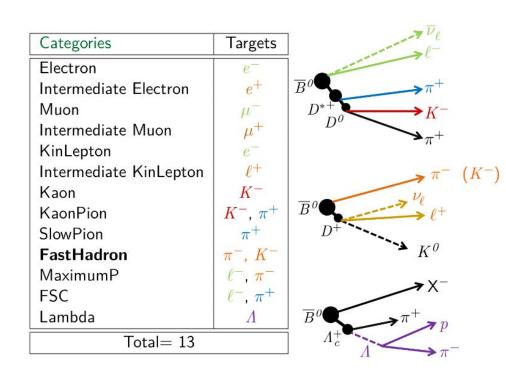



Event selection:


- BDT classifier to suppress continuum background.
- Divide events into two regions:
 - MR1 (K*gamma) $M_{Ks\pi0} \subseteq [0.8,1] \text{ GeV/c}^2$
 - MR2 (Ks $\pi 0 \gamma$) M_{Ks $\pi 0$} \in [0.6,0.8], [1,1.8]GeV/c²

$K_s \pi^0 \gamma$: Signal Extraction

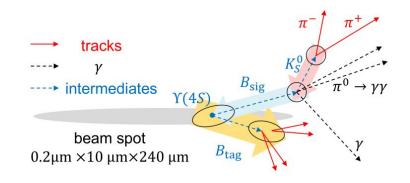
- \rightarrow 2-D fit to M_{bc}- Δ E
- > 3 components:
 - o signal,
 - qqbar background,
 - BBbar background



Sample	Signal yield	$B\overline{B}$ bkg yield	S/N
$B^0 \to K_S^0 \pi^0 \gamma$ in MR1	385 ± 24	20 ± 8	2.36
$B^0 \to K_S^0 \pi^0 \gamma$ in non-MR1	171 ± 23	69 ± 19	0.34

Detour: Flavor Tagging at Belle II

- → Determine the flavor of tag side B (the other B) at the time of decay.
- → Accomplished using multivariate methods:
 - Different categories for different signatures of flavor-specific decays.
 - ♠ Returns the tag flavor q and the dilution factor r.
- → Most efficient B flavor-tagger: 33% tagging efficiency (to be superseded by a newly developed GNN based flavor tagger)


Detour: Vertexing at Belle II

Signal B:

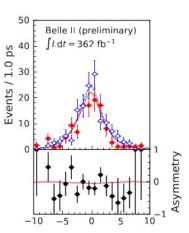
- Uses TreeFitter algorithm to simultaneously fit an entire decay chain.
- Vertexed by using only track information from Ks pions.
- Nano-beam scheme helps in precise determination of beam spot used to further constrain thee vertex.
- Events with poor vertex quality reserved for time-integrated fit.

Tag B:

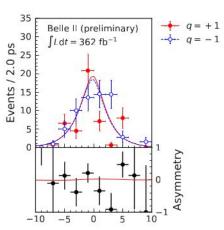
 Uses KFit algorithm to fit the vertex using tracks in thee rest of the event.

$K_{s}\pi^{0}\gamma$: CPV parameter extraction

Fit Δt distribution in seven bins of r values.


Param	Belle II	HFalv
S	$0.00^{+0.27}_{-0.26}\pm0.03$	-0.16 ± 0.22
С	0.10 ± 0.13 ± 0.03	-0.04 ± 0.14

CPV in $K^*\gamma$


Param	Belle II	HFalv (*incl K*γ)
S	$0.04^{+0.45}_{-0.44}\pm0.10$	-0.15 ± 0.20
С	$0.10 \pm 0.13 \pm 0.03$	-0.07 ± 0.12

CPV in $K_s \pi^0 \gamma$

MR2

$$\mathcal{P}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{1 + q \cdot [\underline{S \cdot \sin(\Delta m \Delta t) - C \cdot \cos(\Delta m \Delta t)}]\}$$

More potential modes at Belle II

K _S η γ	<u>BaBar</u> N(BB)=465M	$-0.18^{+0.49}_{-0.46} \pm 0.12$	$-0.32^{+0.40}_{-0.39} \pm 0.07$
	Belle N(BB)=772M	$-1.32 \pm 0.77 \pm 0.36$	$0.48 \pm 0.41 \pm 0.07$
	Average	-0.49 ± 0.42	0.06 ± 0.29
K _S ρ ⁰ γ <mark>(*)</mark>	BaBar N(BB)=471M	$-0.18 \pm 0.32 ^{+0.06} _{-0.05}$	$-0.39 \pm 0.20 ^{+0.03} _{-0.02}$
	Belle N(BB)=657M	$0.11 \pm 0.33^{+0.05}_{-0.09}$	$-0.05 \pm 0.18 \pm 0.06$
	Average(*)	-0.06 ± 0.23	-0.22 ± 0.14
K _S φ γ	Belle N(BB)=772M	$0.74^{\ +0.72}_{\ -1.05}^{\ +0.10}_{\ -0.24}$	$-0.35 \pm 0.58 ^{+0.10} _{-0.23}$

Conclusion and Outlook

- ★ Time-dependent study of radiative penguin modes provide a rich ground for search for New Physics.
- ★ Belle II is the most promising experiment for study of these modes due to a clean environment and good neutrals reconstruction.
- We present the most precise results to date for time-dependent study of $K_s \pi^0 \gamma$ decays of B mesons, by Belle II.
- ★ The results agree with SM within uncertainty.

Backup

$K_s\pi^0\gamma$: Resolution Function Modelling

- Need to model the detector and other effects on decay time difference to get the true deltat distribution.
- 1. Kinematic approximation: corrects the bias from small B⁰ momentum in the CM frame.
- 2. Sig B decay vertex resolution: accounts for the smearing of the decay vertex position by the finite detector resolution,
- 3. Tag B decay vertex resolution: consists of the detector resolution and the bias from non-primary decay vertices.