High Statistics B Decays

Gagan Mohanty

Tao Luo

Story of two players...

LHCb: a general-purpose spectrometer in the forward direction at the LHC, optimized for precision flavor physics

Belle II: second-generation e^+e^- flavor factory operating near the $\Upsilon(4S)$ resonance

In their kitty, they have got

- Integrated luminosity: 9 fb⁻¹ of pp collisions (+ pPb, PbPb, fixed target mode)
- So far, about 8 fb^{-1} in 2024

Roughly, 1 fb⁻¹ of LHCb corresponds to 1 ab⁻¹ of Belle II

- Peak luminosity: $4.7 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - \triangleright World record ($\sim \times 2$ of KEKB)
 - > Aiming an order higher
- Integrated luminosity: 530 fb⁻¹
 - Similar to BABAR data set and half of what Belle recorded in 11 years

Their main goals

1) Precision test of the standard model (SM): measure the sides and angles of the Unitarity Triangle

- 2) Indirect searches for signatures of beyond-the-SM physics mostly in loop dominated decays
 - See the talk by Chandiprasad Kar

They do much more

LHCb has access to all types of heavy hadrons: B^0 , B^+ , B_s^0 , B_c^+ , Λ_b ...

Checking an SM candle: ϕ_3/γ

• Exploit the interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$ transitions

Combination of

- > 19 B decay results
- > 11 D decay results
- > 4 new and few updated results
- 198 input observables to determine53 parameters

$$\gamma = (64.6 \pm 2.8)^{\circ}$$

→ Most precise determination from direct measurements to date

Checking an SM candle: ϕ_3/γ

• Combine measurements based on data (771 fb⁻¹) from Belle with those based on data (up to 362 fb⁻¹) from Belle II

B decay	D decay	Method	Data set (Belle + Belle II)[fb^{-1}]	Ref.
$B^+ \to Dh^+$	$D \to K_{\rm S}^0 \pi^0, K^- K^+$	GLW	711 + 189	[23]
$B^+ \to D h^+$	$D \to K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0	[15, 24]
$B^+ \to D h^+$	$D \to K_{\mathrm{s}}^0 K^- \pi^+$	GLS	711 + 362	[25]
$B^+ \to D h^+$	$D \to K_{\rm S}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128	[26]
	$D \to K_{\rm S}^0 \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0	[27]
$B^+ \to D^*K^+$	$D^* \to D\pi^0, D \to K_{\rm S}^0\pi^0, K_{\rm S}^0\phi, K_{\rm S}^0\omega, K^0-K^+, \pi^-\pi^+$	GLW	210+0	[12]
$B^+ \to D^*K^+$	$D^* \to D\pi^0, D\gamma, D \to K_s^0\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0	[28]

$$\phi_3 = (75.2 \pm 7.6)^\circ$$

Improved determination of $\sin 2\beta$

• Flagship measurements from first-generation e⁺e⁻ flavor factories (Belle and BABAR) that confirmed the Kobayashi-Maskawa mechanism for CP violation

$$\sin 2\beta = 0.717 \pm 0.013(\text{stat}) \pm 0.008(\text{syst})$$

 \longrightarrow Most precise single measurement of sin 2β to date

What about the 3rd angle?

- Challenging measurement of $B^0 \to \rho^+ \rho^-$
 - \triangleright P \rightarrow VV decay (requires angular analysis)
 - \triangleright Two soft neutral pions from ρ mesons
 - Large continuum background

In agreement with previous e^+e^- experiments (measurement will be difficult for LHCb)

Experiment	${\mathcal S}$	$\boldsymbol{\mathcal{C}}$	$N_{B\overline{B}}$
Belle II	$-0.26 \pm 0.19 \pm 0.08$	$-0.02 \pm 0.12^{+0.06}_{-0.05}$	388×10^6
Belle	$-0.13 \pm 0.15 \pm 0.05$	$0.00 \pm 0.10 \pm 0.06$	772×10^6
BABAR	$-0.17 \pm 0.20^{+0.05}_{-0.06}$	$0.01 \pm 0.15 \pm 0.06$	384×10^6

What about the 3rd angle?

• Inclusion of the Belle II $B^0 \to \rho^+ \rho^-$ results results in 6% improvement in world average

$$\phi_2 = \left(92.6^{+4.5}_{-4.8}\right)^{\circ}$$

Anomalies of two types

b→sll – flavour-changing neutral current – loop only in SM

- 2-3 standard deviation tensions in angular distributions and absolute branching fractions
 - but long-distance contributions must be considered, which weaken these tensions
 - LHCb <u>arXiv:2405.17347</u>
- Lepton-universality violation in ratios cancelled Christmas 2022
 - LHCb PRD 108, 032002

• b → c τν - measured relative to light lepton decay in exclusive decays

Longstanding

-3 standard deviation tension

Average

LHCbs

Beller

0.35

LHCbs

LHCbs

Experimental average

LHCbs

LHCbs

Average

LHCbs

Theoretical

prediction

0.3

HFLAV SM Prediction R(D) = 0.298 ± 0.004

0.2

 $R(D) = 0.342 \pm 0.026_{post}$ $R(D^*) = 0.287 \pm 0.012_{oo}$

0.5

R(D)

0.4

R(D*): subject of great interest

Measure the lepton flavor universality ratio

$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \ell \nu)}$$

- Sensitive to BSM contribution, e.g., leptoquark
- First Belle II result (189 fb⁻¹) based on the hadronic B tagging method

$$R(D^*) = 0.262 {}^{+0.041}_{-0.039}(stat) {}^{+0.035}_{-0.032}(syst)$$

 Control sample statistics is the main source of systematic uncertainty

Comparable statistical precision as Belle with only ¼ the data

R(D*): subject of great interest

• Measure the lepton flavor universality ratio

$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \ell \nu)}$$

- Sensitive to BSM contribution, e.g., leptoquark
- First Belle II result (189 fb⁻¹) based on the hadronic B tagging method

$$R(D^*) = 0.262 {}^{+0.041}_{-0.039}(stat) {}^{+0.035}_{-0.032}(syst)$$

- Control sample statistics is the main source of systematic uncertainty
- Comparable statistical precision as Belle with only ¼ the data

What does LHCb say?

- At one point, I was bit unsure if LHCb could really do this measurement involving multiple neutrinos...

 LHCB-PAPER-2024-007
- Feed-down from $D^{*+} \rightarrow D^{+}\pi^{0}$, $D^{+}\gamma$ with π^{0}/γ not reconstructed gives access to $R(D^{*+})$ in the same final state

$$R(D^+) = 0.249 \pm 0.043 \text{ (stat.)} \pm 0.047 \text{ (syst.)}$$

 $R(D^{*+}) = 0.402 \pm 0.081 \text{ (stat.)} \pm 0.085 \text{ (syst.)}$

- Compatible with SM at the level of 0.78σ

What's future plan for Belle II?

- Run 2 is expected to be long (may be end 2028 or later)
 - > Steady integration at a peak luminosity of $\sim 2 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ for several ab⁻¹ data
 - ➤ After Run 2, go for upgrade to reach the design luminosity and accumulate tens of ab⁻¹

— LHCb upgrade plan by...

Summary

- ☐ Focus on some of the recent analyses from Belle II and LHCb related to the Unitarity Triangle and LFU test
- □ Number of interesting studies that I have been unable to cover in this talk can be accessed from the Belle II and LHCb publication pages
- ☐ Much more to come from these flavor frontier experiments
- > Stay tuned ...

Additional information

More to be added