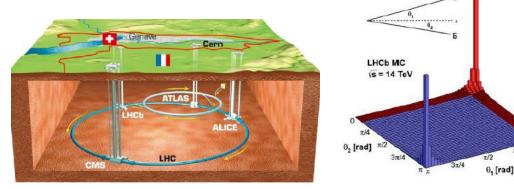
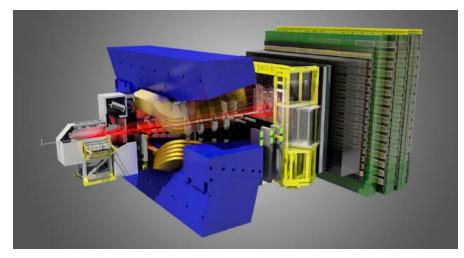
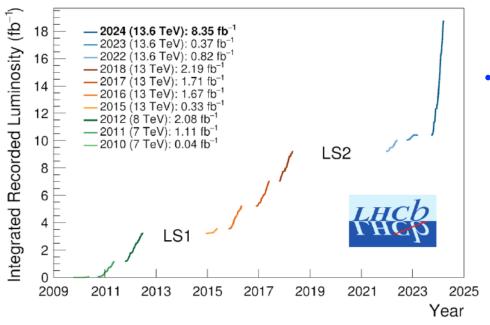

High Statistics B Decays



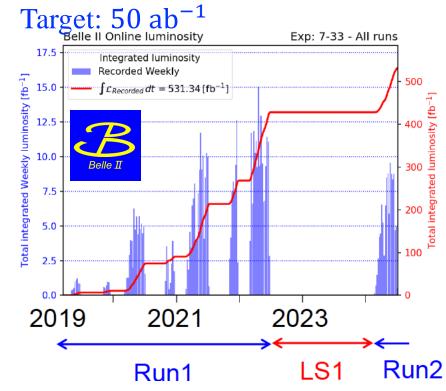


Story of two players...

LHCb: a general-purpose spectrometer in the forward direction at the LHC, optimized for precision flavor physics

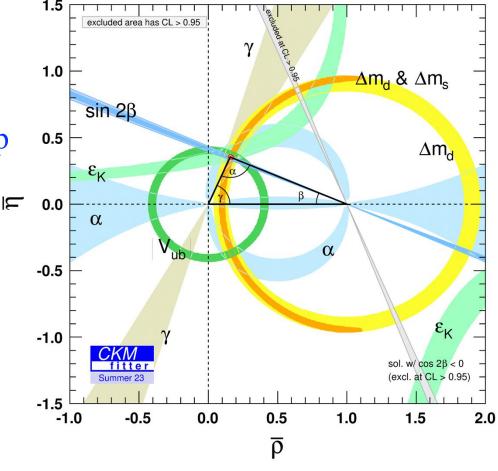


Belle II: second-generation e⁺e⁻ flavor factory operating near the Y(4S) resonance

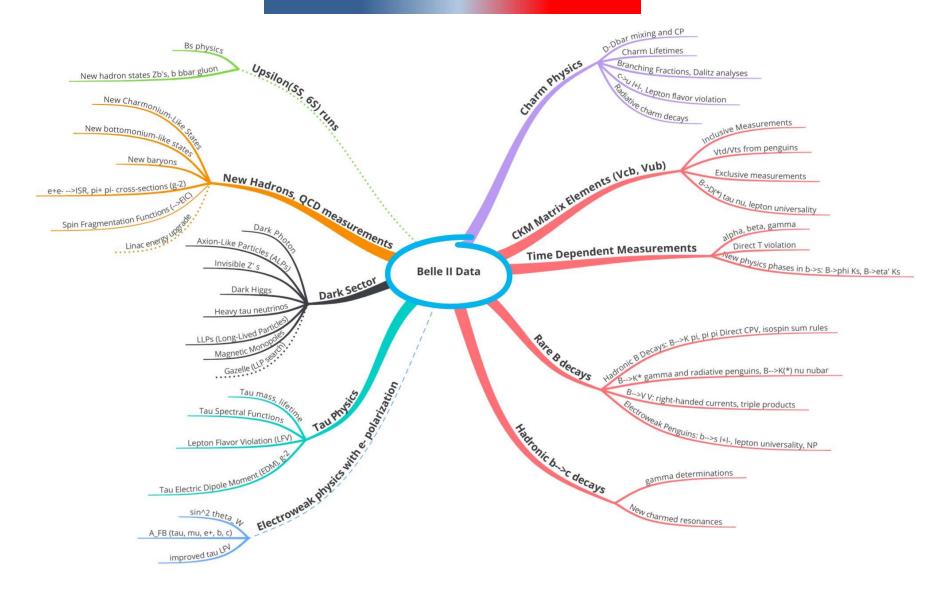

In their kitty, they have got

- Integrated luminosity: 9 fb⁻¹ of pp collisions (+ pPb, PbPb, fixed target mode)
- Recorded $\sim 8 \text{ fb}^{-1}$ in 2024 alone!

- Roughly, 1 fb⁻¹ of LHCb corresponds to 1 ab⁻¹ of Belle II
- Belle II has an upper hand for the final states with neutrals ($\gamma, \pi^0, \nu...$)

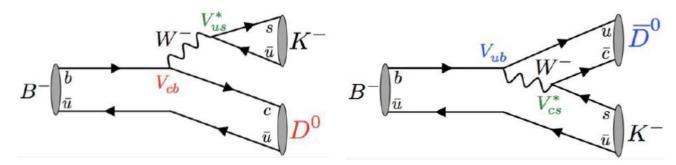

- Peak luminosity: 4.7×10^{34} cm⁻² s⁻¹
 - > World record ($\sim \times 2$ of KEKB)
 - Aiming an order higher
- Integrated luminosity: 530 fb⁻¹
 - Similar to BABAR data set and half of what Belle recorded in 11 years

Their main goals


- 1) Precision test of the standard model (SM): measure the angles and sides of the Unitarity Triangle 1.5
- 2) Indirect searches for beyondthe-SM physics mostly in loop dominated decays

- See the talk by C. Kar

Alternative notation $\beta \equiv \phi_1, \alpha \equiv \phi_2$, and $\gamma \equiv \phi_3$ exists

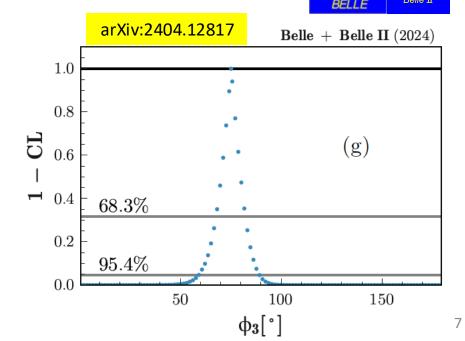

They do much more

• LHCb has access to all kinds of heavy hadrons: B^0 , B^+ , B_s^0 , B_c^+ , Λ_b ...

Checking an SM candle: γ/ϕ_3

• Exploit the interference between $b \rightarrow c\overline{u}s$ and $b \rightarrow u\overline{c}s$ transitions

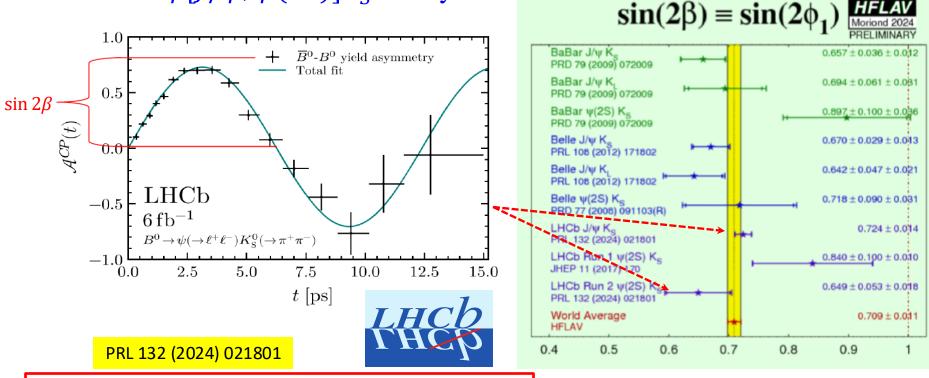
- **Combination of** LHCb-CONF-2024-004 19 B decay results $B^0_* \rightarrow D^{\mp}_* K^{\pm}$ \geq $B^0_* \to D^{\mp}_* K^{\pm}$ 11 D decay results $\rightarrow DK^{*\pm}$ \geq 0.8 $\rightarrow D^*h^{\pm}$ 4 new and few updated results $\rightarrow DK^{*0}$ \geq $B^{\pm} \rightarrow Dh^{\pm}$ 198 input observables to determine 0.6All Modes \succ 53 parameters 0.468.3% 0.2 $\gamma = (64.6 \pm 2.8)^{\circ}$ 95.4% 0.0_{20} 40 60 120 80 100 γ [°]
- Most precise determination from direct measurements to date


Checking an SM candle: γ/ϕ_3

Combine measurements based on data (771 fb⁻¹) from Belle with those based on data (up to 362 fb⁻¹) from Belle II

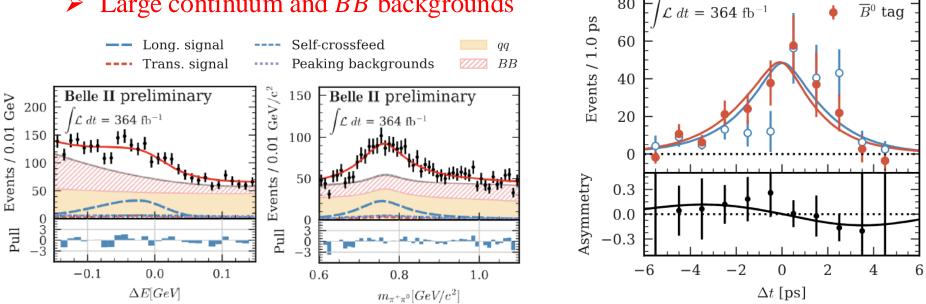
B decay	D decay	Method	Data set (Belle + Belle II)[fb^{-1}]
$B^+ \to Dh^+$	$D \to K^0_{\rm s} \pi^0, K^- K^+$	GLW	711 + 189
$B^+ \to Dh^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ \to Dh^+$	$D \to K_{\rm s}^0 K^- \pi^+$	GLS	711 + 362
$B^+ \to Dh^+$	$D \to K_{\rm s}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128
	$D \to K^0_{\rm s} \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0
$B^+ \to D^* K^+$	$ \begin{array}{l} D^* \to D \pi^0, D \to K^0_{\rm S} \pi^0, K^0_{\rm S} \phi, K^0_{\rm S} \omega, \\ K^- K^+, \pi^- \pi^+ \end{array} $	GLW	210+0
	$D^* \to D\pi^0, D\gamma, D \to K^0_{\rm s}\pi^-\pi^+$	BPGGSZ $(m.d.)$	

 4 methods: GLW (CP eigenstates), ADS (doubly Cabibbo suppressed modes), GLS (Cabibbo suppressed modes), and BPGGSZ aka Dalitz


$$\phi_3 = (75.2 \pm 7.6)^\circ$$

Improved determination of $\sin 2\beta$

- Flagship measurements from first-generation e⁺e⁻ flavor factories (Belle and BABAR) confirmed the Kobayashi-Maskawa theory for CP violation
- LHCb performed the measurement in $B^0 \rightarrow \psi[J/\psi, \psi(2S)]K_S^0$ decays



 $\sin 2\beta = 0.717 \pm 0.013(\text{stat}) \pm 0.008(\text{syst})$

- Most precise single measurement of $\sin 2\beta$ to date

What about the angle ϕ_2 ?

- Challenging measurement of $B^0 \rightarrow \rho^+ \rho^-$
 - \blacktriangleright P \rightarrow VV decay (requires angular analysis)
 - Two soft neutral pions from ρ mesons \succ
 - Large continuum and $B\overline{B}$ backgrounds

Experiment	\$	\mathcal{C}	N _{BB}
Belle II	$-0.26 \pm 0.19 \pm 0.08$	$-0.02\pm0.12\substack{+0.06\\-0.05}$	388×10^6
Belle	$-0.13 \pm 0.15 \pm 0.05$	$0.00 \pm 0.10 \pm 0.06$	772×10^{6}
BABAR	$-0.17\pm0.20\substack{+0.05\\-0.06}$	$0.01 \pm 0.15 \pm 0.06$	384×10^6

Agree with previous e^+e^- experiments (will be difficult for LHCb)

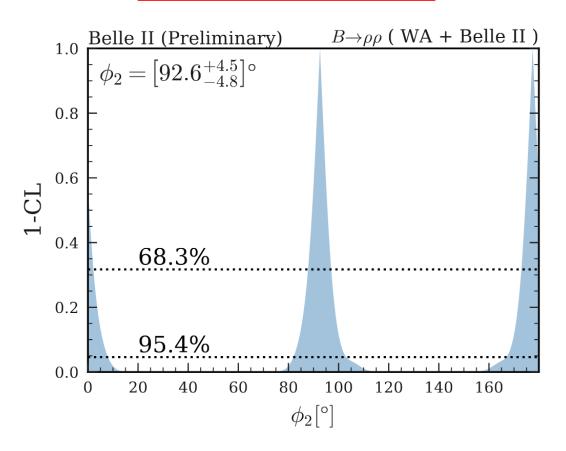
Paper in preparation

Belle II preliminary

 $\mathcal{L} dt = 364 \text{ fb}^{-1}$

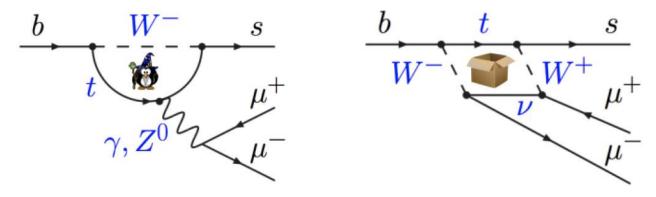
100

80


Belle T

 B^0 tag

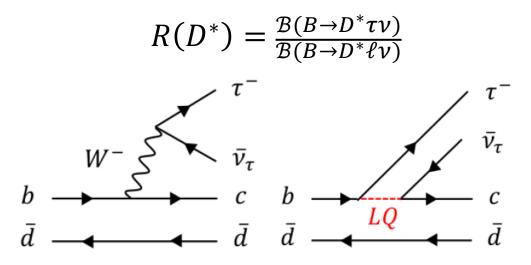
What about the angle ϕ_2 ?

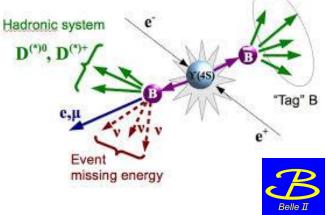

• Inclusion of the Belle II $B^0 \rightarrow \rho^+ \rho^-$ result yields 6% improvement in the world average

$$\phi_2 = \left(92.6^{+4.5}_{-4.8}\right)^{\circ}$$

From CKM angles to anomalies

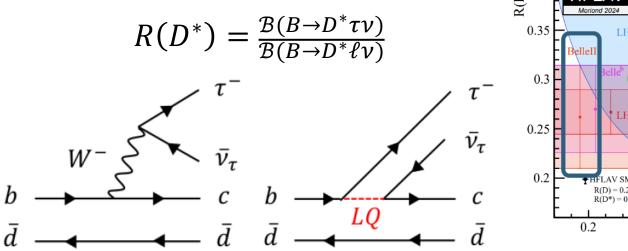
Two types: first one in decays mediated by the flavor-changing neutral current $b \rightarrow s\ell^+\ell^-$ transition

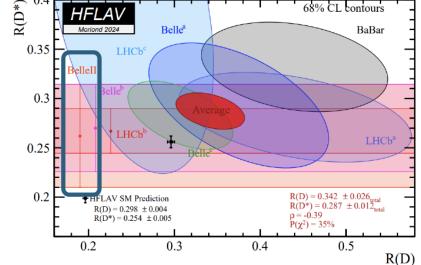

- Tensions of 2-3 standard deviations in absolute branching fractions and angular distributions (remember the famous p'_{5})
 - Potential long-distance contributions weaken these tensions
- Lepton flavor universality (LFU) violation in the famous $R(K^*, K)$ ratios died off around 2022 Christmas
 - ➢ For details see PRD 108 (2022) 032002

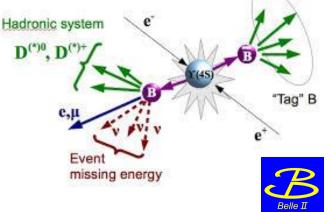

There is another one \rightarrow

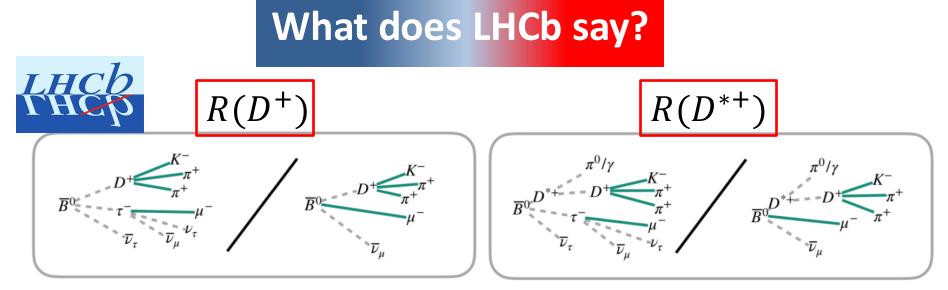
R(D*): subject of great interest

• Measure the LFU ratio:

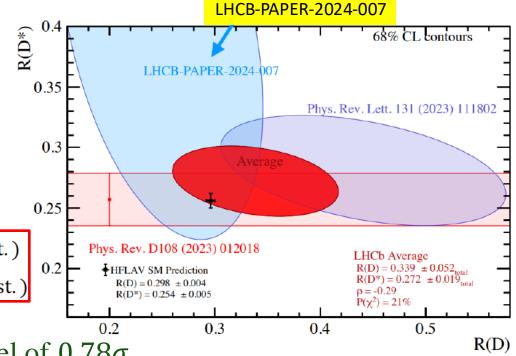



- Sensitive to BSM contribution, e.g., leptoquark
- First Belle II result (189 fb⁻¹) based on the hadronic *B* tagging method


R(D*): subject of great interest


• Measure the LFU ratio:

- Sensitive to BSM contribution, e.g., leptoquark
- First Belle II result (189 fb⁻¹) based on the hadronic *B* tagging method $\frac{arXiv:2401.02840}{R(D^*) = 0.262 + 0.041 \atop -0.039} (stat) + 0.035 \atop -0.032} (syst)$
- Control sample statistics is the main source of systematic uncertainty
 - Comparable statistical precision as Belle with only 1/4 the data



- At one point, I was bit unsure if LHCb could really do this measurement involving multiple neutrinos...
 LHCB-PAPER-2024-007
- Feed-down from $D^{*+} \rightarrow$ $D^{+}\pi^{0}, D^{+}\gamma$ with π^{0}/γ not reconstructed gives access to $R(D^{*+})$ in the same final state 0.25

 $R(D^+) = 0.249 \pm 0.043 \text{ (stat.)} \pm 0.047 \text{ (syst.)}$

 $R(D^{*+}) = 0.402 \pm 0.081 \text{ (stat.)} \pm 0.085 \text{ (syst.)}$

- Compatible with SM at the level of 0.78σ

A related observable: R(X)

• Using Run 1 data (189 fb^{-1}) Belle II has measured inclusive LFU ratio:

Ve

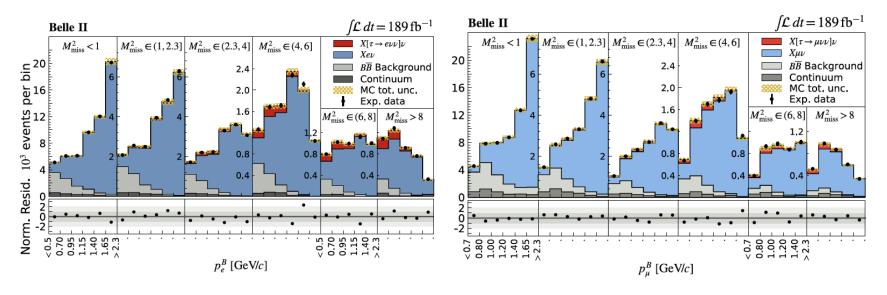
 e^{\dagger}

 $B_{\rm sig}^+$

 π

 π^+

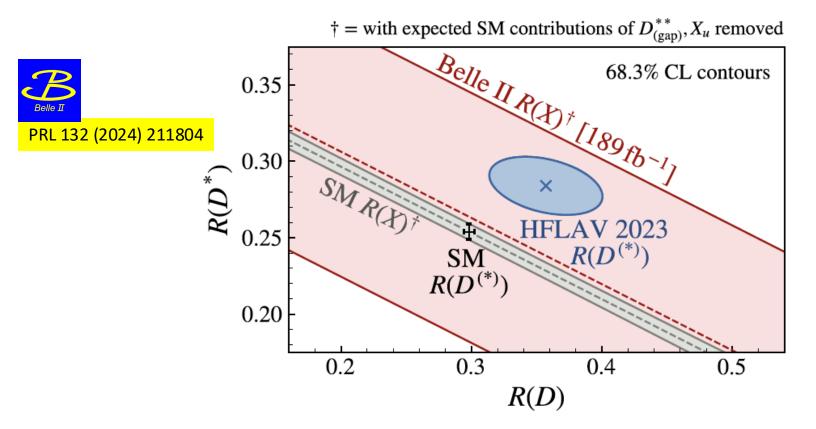
 $D^0_{\mathcal{V}}$


 π

 $B_{\rm tag}^-$

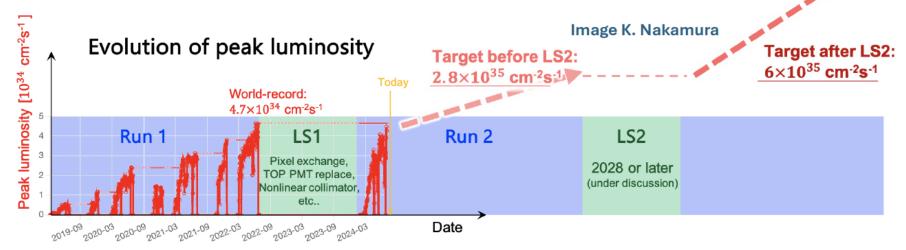
$$R(X) = \frac{\mathcal{B}(B \to X\tau\nu)}{\mathcal{B}(B \to X\ell\nu)}$$

- Exploit the hadronic tagging method
- Use the missing mass squared and *B* candidate momentum to extract signal

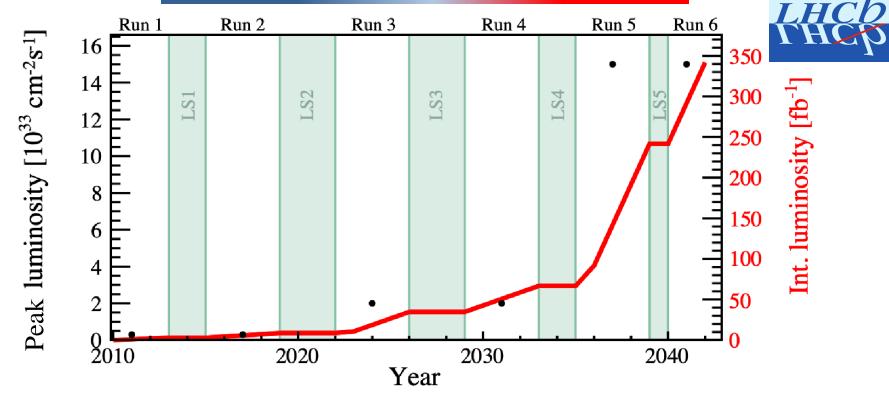

Key challenge: accurate modeling of backgrounds
Their templates calibrated with control samples and sidebands

A related observable: R(X)

$$R(X_{\tau/\ell}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$$


• Result agrees with the prediction $R(X)_{SM} = 0.223 \pm 0.005$ JHEP 11 (2022) 007

The above plot tells us that the result is also consistent with world averages of $R(D^{(*)})$


What future holds for Belle II?

SuperKEKB/Belle II status and plans

- Run 2 is expected to be long (may be end 2028 or later)
 - Steady integration at a peak luminosity of ~2 × 10³⁵ cm⁻² s⁻¹ for several ab⁻¹ data
 - After Run 2, go for upgrade to reach the design luminosity (6 \times 10³⁵ cm⁻²s⁻¹) and accumulate tens of ab⁻¹

What about LHCb upgrade?

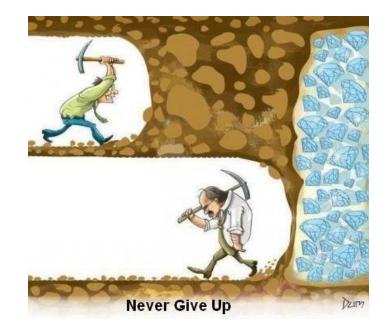
• Phase-I upgrade during LS2 for Run 3+4

➢ Full software trigger and read out all detectors at 40 MHz

Replace vertex and tracking detectors as well as PID system; consolidate PID, tracking and ECAL during LS3

> Target for $\mathcal{L}_{peak} \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ and $\mathcal{L}_{int} > 50 \text{ fb}^{-1}$ by end of Run 4

- Phase-II upgrade during LS4 beyond Run 4 (for 300 fb⁻¹)
 - > New detector technologies and timing towards $\mathcal{L}_{peak} \sim 1.5 \times 10^{34} cm^{-2} s^{-1}$


Summary

- □ Focus on some of the recent analyses from Belle II and LHCb related to the Unitarity Triangle and LFU test
- Number of interesting studies that I have been unable to cover in this talk can be accessed from the Belle II and LHCb publication pages:

https://www.belle2.org/research/physics/publications https://lbfence.cern.ch/alcm/public/analysis

□ Much more to come from these flavor frontier experiments

➢ Stay tuned

Additional information

More to be added