Update on Bhabha A_{LR} Studies of Sensitivity to $sin^2\theta_W$

Caleb Miller J. Michael Roney University of Victoria 7 Oct 2024

$sin^2\theta_W$ Sensitivity to A_{LR}

As suggested by authors of ReneSANCE, we shift values of M_w in ReneSANCE generator to determine $sin^2\theta_W$ sensitivity to A_{LR}

With 40ab⁻¹ we'd have an uncertainty on $sin^2\theta_w$ from only Bhabha events of ± 0.00030

Comparable to combined SLD-LEP uncertainty of ±0.00024 on $sin^2\theta_W$ at the Z⁰ pole involving only the Z⁰-electron couplings (Note: recent CMS result for $sin^2\theta_W$ from Z⁰-> e+e- is ±0.00041)

Also comparable to the MOLLER experiment's projected uncertainty of (±0.00028) at the lower 100 MeV energy scale
Chiral Belle including tau and muons – assuming lepton universality gives an uncertainty of ±0.00018 - would be single most precise measurement of sin²θ_w (NB: ±0.00016(LEP + SLC))