

Search for Radiative D_s Decays

N Sushree Ipsita

on behalf of Belle(II) collaboration | October 10, 2024

INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD (IITH)

17th International Conference on Interconnections between Particle Physics and Cosmology, 14-18 October 2024, India

PPC2024@IITH

Outline

- Motivation
- Belle experiment
- Radiative D_s decays
 - $\ \ \, D_s^+ \rightarrow \rho^+ \gamma$ & $D_s^+ \rightarrow K^{*+} \gamma$ study
 - Background suppression
 - Signal extraction
 - Control sample study

Summary

Motivation

- In the Standard Model (SM), the physics of charmed mesons faces certain challenges compared to strange and beauty mesons because the CP asymmetries and D⁰ - D
 ⁰ oscillations are small. (I. I. Bigi, Report No. CERN-TH.7370/94)
- Investigating weak decays of D mesons is complex due to significant final-state interactions.

Motivation

- In the Standard Model (SM), the physics of charmed mesons faces certain challenges compared to strange and beauty mesons because the CP asymmetries and D⁰ - D
 ⁰ oscillations are small. (I. I. Bigi, Report No. CERN-TH.7370/94)
- Investigating weak decays of D mesons is complex due to significant final-state interactions.

SM Predictions and NP Probes:

- The oscillations and $c \rightarrow u\gamma$ decays might have some contributions coming from the non-minimal supersymmetry (an NP scenario).
- NP would result in a deviation from the ratio of branching fractions

$$R_{\rho/\omega} \equiv \frac{\Gamma(D^0 \to \rho^0/\omega\gamma)}{\Gamma(D^0 \to \bar{K}^{*0}\gamma)} = \frac{\tan^2\theta_c}{2}$$

where θ_c is the Cabibbo angle.

Motivation

- In the Standard Model (SM), the physics of charmed mesons faces certain challenges compared to strange and beauty mesons because the CP asymmetries and D⁰ - D
 ⁰ oscillations are small. (I. I. Bigi, Report No. CERN-TH.7370/94)
- Investigating weak decays of D mesons is complex due to significant final-state interactions.

SM Predictions and NP Probes:

- The oscillations and $c \rightarrow u\gamma$ decays might have some contributions coming from the non-minimal supersymmetry (an NP scenario).
- NP would result in a deviation from the ratio of branching fractions

$$R_{\rho/\omega} \equiv \frac{\Gamma(D^0 \to \rho^0/\omega\gamma)}{\Gamma(D^0 \to \bar{K}^{*0}\gamma)} = \frac{\tan^2\theta_c}{2}$$

where θ_c is the Cabibbo angle.

 A similar ratio for D⁺_s radiative decays offers a much better probe for an NP signal(Phys. Rev. D 54, 5883(1996)), as the latter

$$R_K \equiv \frac{\Gamma(D_s^+ \to K^{*+} \gamma)}{\Gamma(D_s^+ \to \rho^+ \gamma)} = \tan^2 \theta_c$$

is less sensitive to SM corrections and offers a more robust NP probe.

Recent Status:

- Long-distance(LD), non-perturbative processes dominate these decays, potentially enhancing BFs, basically to test the QCD based calculations of LD dynamics.[Phys. Rev. D 56, 4302]
- The BF of $D_s^+ \rightarrow \rho^+ \gamma \ [D_s^+ \rightarrow K^{*+} \gamma]$ mode is expected to lie within the range of O(10⁻⁵) O(10⁻³)[O(10⁻⁸) O(10⁻⁴)], according to the predictions of different models [JHEP 08 (2017) 091 [arXiv:1701.06392]], which are quite divergent for the D_s decay mode.
- Upper limit of the BF of $D_s^+ \rightarrow \gamma \rho(700)^+$ of 6.1 × 10⁻⁴ at the 90% confidence level by BESIII colloboration [arXiv:2408.03980v1 [hep-ex]]

Recent Status:

- Long-distance(LD), non-perturbative processes dominate these decays, potentially enhancing BFs, basically to test the QCD based calculations of LD dynamics.[Phys. Rev. D 56, 4302]
- The BF of $D_s^+ \rightarrow \rho^+ \gamma \ [D_s^+ \rightarrow K^{*+} \gamma]$ mode is expected to lie within the range of O(10⁻⁵) O(10⁻³)[O(10⁻⁸) O(10⁻⁴)], according to the predictions of different models [JHEP 08 (2017) 091 [arXiv:1701.06392]], which are quite divergent for the D_s decay mode.
- Upper limit of the BF of $D_s^+ \rightarrow \gamma \rho(700)^+$ of 6.1×10^{-4} at the 90% confidence level by BESIII colloboration [arXiv:2408.03980v1 [hep-ex]]

Presenting herein...

- Radiative decays $D^+_s
 ightarrow {\cal K}^{*+} \gamma$ have not been observed experimentally.
- The first sensitivity study of radiative *D_s* meson decays with data collected by the Belle experiment.
- Predictions for branching fractions and comparisons with theoretical models.

Belle experiment at KEKB

- KEKB is an asymmetric-energy e^+e^- collider operating near $\Upsilon(4S)$ mass peak (~ 10.58 GeV/ c^2 , > $B\bar{B}$ threshold).
- Belle detector has good performances on momentum/vertex resolution; particle identification, etc.
- Accumulated data set of ~1 ab⁻¹: which provides a large BB sample (772 millions), and also a large charm sample to study charm physics.
- Fruitful Charm results are lasting to produce, although the accumulation of final data set finished >14 years ago.

Belle Detector

$e^+e^- ightarrow$	Cross section [nb]
$\Upsilon(4S)$	1.05 ± 0.10
$c\overline{c}$	1.30
$s\overline{s}$	0.38
$u\overline{u}$	1.61
$d\overline{d}$	0.40
$\tau^+ \tau^-(\gamma)$	0.919
$\mu^+\mu^-(\gamma)$	1.148
$e^+e^-(\gamma)$	300 ± 3

Analysis In a Nutshell Challenges:

Background suppression

Decay mode	MVA	Bkg.	Sig.
	cut	Rej.	Ret.
$D_s^+ o ho^+ \gamma$	>0.4	66 %	90 %
$D_s^+ o K^{*+}\gamma[1]$	>0.5	74 %	78 %
$D_s^+ o K^{*+} \gamma$ [2]	>0.5	74 %	77 %

- Cut on the output of MVA classifiers optimized and trained using simulated data
- Expected around 80-100, 15-20 [1] and 8-10[2] events assuming Branching fraction 10^{-4} for $D_s^+ \rightarrow \rho^+ \gamma$ and 10^{-5} for $D_s^+ \rightarrow K^{*+} \gamma$ using Belle data

Decay mode	efficiency(%)	
$D_s^+ o ho^+ \gamma$	0.47 ± 0.01	
$D_s^+ o K^{*+} \gamma$ [1]	3.09 ± 0.02	
$D_s^+ o K^{*+}\gamma$ [2]	0.79 ± 0.01	

Search for Radiative D_s Decays - N Sushree Ipsita

Signal extraction

- ΔM signal window = [0.1237, 0.1660] GeV/ c^2
- $M_{D_s} \in (1.835, 2.10) {
 m GeV}/c^2$
- Performed 1D unbinned maximum likelihood fit to extract signal yield using 711 fb⁻¹ of Belle MC sample taking peaking backgrounds into consideration.

Validation

Control mode study:

- $D_{c}^{+} \rightarrow \rho^{+} n, \rho^{+} \rightarrow \pi^{+} \pi^{0}$ • $D^{*0} \rightarrow [D^0 \rightarrow K_s^0 \pi^0] \gamma$ • $D^{*0} \rightarrow [D^0 \rightarrow K_c^0 \eta] \gamma$
- st 4500 vents charm charm charm Preliminary Belle MC Preliminary Belle MC Preliminary Belle MC 700 uds • uds • uds $D^{\theta} \rightarrow K^{\theta}_{+} \pi^{\theta}$ mixed $D^+ \rightarrow 0^+ T$ $D^0 \rightarrow K^0$ n mixed 1200 mixed 3500 600 charged charged charged 1000 3000 500 2500 800 400 2000 600 300 1500 400 200 1000 100 200 500 1761781818218418618819192194196 1761781818218418618819192194196 1.85 19 1.95 2.05 2 M_{ao} (GeV/c²) M_a (GeV/c²) M_D (GeV/c²) Decay mode efficiency(%) $D_{\epsilon}^+ \to \rho^+ \eta$ 0.43 ± 0.01 • $\Delta M = M_{D_{\epsilon}^{*+}} - M_{D_s}$ • $M_{D_s} \in (1.835, 2.10) \text{GeV}/c^2$ $D^0 \rightarrow K_{\rm s}^{\overline{0}} \pi^{\overline{0}}$ 3.37 ± 0.02 $\bullet \Delta \mathsf{M} = M_{D^{*0}} - M_{D^0}$ • $M_{\rm D0} \in (1.76.1.96) {\rm GeV}/c^2$ $D^0 \rightarrow K^0_* n$ 3.15 ± 0.02

sample study on a decay channel.

Similar cut applied including FastBDT output

To verify the signal extraction procedure and to calibrate the

MC/Data resolution of our MC studies, we perform a control

21

Crosschecks with MC

• Performed 1D unbinned maximum likelihood fit of M_{D_s} and M_{D^0} within the signal window of ΔM to extract signal yield using 711 fb^{-1} of Belle MC sample taking peaking backgrounds into consideration.

$$ratio(\mathsf{R}) = \frac{B(D^0 \to K_s^0 \pi^0)}{B(D^0 \to K_s^0 \eta)}$$

R as per MC (DECAY.DEC) = 2.91 (2.84)

Summary

Conclusion

- Belle is still producing new results.
- Performed MC Study with implementation of π^0/η veto and MVA training to get rid of the huge background for $D_s^+ \rightarrow \rho^+ \gamma$ and $D_s^+ \rightarrow K^{*+} \gamma$ decay mode.
- Validated using control mode studies on $D_s^+ \to \rho^+ \eta$, $D^0 \to K_s^0 \eta$, $D^0 \to K_s^0 \pi^0$. We will calculate of branching fraction or upper limit depending on the final observation.
- Expected around 80-100, 15-20 [1] and 8-10[2] events assuming branching fraction 10^{-4} for $D_s^+ \to \rho^+ \gamma$ and 10^{-5} for $D_s^+ \to K^{*+} \gamma$ using Belle data.
- As a summary, I would like to say, "Our Belle is not only keeping alive but still keeping energetic with fruitful charm results, although its final full data set was achieved more than 14 years ago."

Please stay tuned!!!!

Thank you for your attention

