CP violation

Ryogo Okubo (Nagoya University, Japan) on behalf of Belle II collaboration

Belle II experiment

Belle II experiment

- High luminosity e⁻e⁺ collider experiment at a center of mass energy of 10.58 GeV.
- Target integral Luminosity : $50 \; ab^{-1}$
- Target peak luminosity : $6\times 10^{35} cm^{-2} s^{-1}$

Status of Belle II

- Integrated 531 fb⁻¹
- Achieved Peak luminosity $4.7 \times 10^{34} cm^{-2} s^{-1}$ World-best, **2x higher** than Belle.

Long shutdown 1 2022-2023

- Accelerator upgrade
- Full Pixel detector (Innermost vertex detector) installation
- TOP photodetector replacement
- Other detectors upgrate

TOP PMT replacement during long shutdown1

Full PXD installation

Unitarity triangle

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Unitarity $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Belle II can measure all ϕ_1, ϕ_2 , and ϕ_3

Unitarity triangle measurement at Belle II BSM constraint in B mix

- Large statistics + Clean environment
 - \rightarrow Can measure the Unitarity triangle precisely
- Global Fit to Observables

→ Give a Constraint to BSM!

In B_d^0 mixing <u>BSM / SM < 30%</u>

Unitarity triangle angles
• $\boldsymbol{\phi}_1 = \boldsymbol{\beta} = \arg[-(V_{cd}V_{cb}^*)/(V_{td}V_{tb})]$ $B^0 \rightarrow J/\Psi K_s^0$
• $\boldsymbol{\phi}_{2} = \boldsymbol{\alpha} = \arg[-V_{td}V_{tb}^{*}/V_{ud}V_{ub}^{*}]$ $B \rightarrow \pi\pi, B^{+} \rightarrow \rho^{+}\rho^{0}, B^{0} \rightarrow \rho^{+}\rho^{-}$ NEW
• $\phi_2 = \gamma = \arg[-V_1, V^*, /V_1, V^*,]$

• $\phi_3 = \gamma = \arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*]$ $B^+ \to D^0K^+$ with various D^0 decays

World a (CKMF	World average (CKMFitter, 2023 summer)		
ϕ_1	$(22.84^{+0.33}_{-0.30})^{\circ}$		
ϕ_2	$(86.2^{+3.9}_{-3.5})^{\circ}$		
ϕ_3	$(65.9^{+3.3}_{-3.5})^{\circ}$		

 ϕ_2 has the largest uncertainty

ϕ_3

ϕ_3 measurement

$\phi_3 = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$

appear in CPV parameter of $b \rightarrow u\bar{c}s$ and $b \rightarrow c\bar{u}s$ tree decay interference.

Suppressed

$$\frac{\mathcal{A}(\overline{D}^0 K^-)}{\mathcal{A}(D^0 K^-)} = r_B \exp(i(\delta_B - \phi_3))$$

$$r_B = |\mathcal{A}(\overline{D}^0 K^-)| / |\mathcal{A}(D^0 K^-)| \simeq c_f |V_{cs} V_{ub}^* / V_{us} V_{cb}^*| \simeq 0.1 \ (c_f : \text{Color suppression factor})$$

$$\delta_B: \text{ Strong phase difference between 2 modes}$$

Methods to measure ϕ_3 using different D^0 decays

- GLW method: $D^0 \rightarrow K^+ K^-$, $K^0_s \pi^0$ (CP eigenstates)
- BPGGSZ method: self conjugate multibody decay, ex.) $D^0 \rightarrow K_s^0 h^+ h^-$
- GLS method: $D^0 \to K^0_S K^{\pm}_{-} \pi^{,\mp}$ (singly Cabibbo-suppressed decays)
- ADS method: $D^0 \rightarrow K^{\pm} \pi^{\mp}$

$B^{\pm} \rightarrow D_{CP\pm}K^{\pm}$ using Belle + Belle II data

Observables: Direct CPV in \mathcal{B} ratio

$$\begin{split} \mathcal{A}_{CP\pm} &\equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}, \\ \mathcal{R}_{CP\pm} &\equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{(\mathcal{B}(B^- \to D_{\text{flav}}K^-) + \mathcal{B}(B^+ \to \overline{D}_{\text{flav}}K^+))/2}. \end{split}$$

$$D_{CP+}$$
: CP-Even decay $(D \to K^+K^-)$
 D_{CP-} : CP-odd decay $(D \to K_s^0\pi^0)$
 D_{flav} : Flavor specific decay $(D \to K^\pm\pi^\mp)$

$$\mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3,$$
$$\mathcal{A}_{CP\pm} = \pm 2r_B \sin \delta_B \frac{\sin \phi_3}{\mathcal{R}_{CP\pm}}.$$
(GLW Method)

Simultaneous fit to $B \rightarrow D\pi$, *DK*, with different *D* decays

 $B^+ \rightarrow DK, D \rightarrow K^+K^-$ (CP even) , $D \rightarrow K_s^0 \pi^0$ Belle II unique $B^+ \rightarrow D(K_s^0 \pi^0) K^+$ (e) $B^- \rightarrow D(K^0_c \pi^0) K^-$ (f) $\int \frac{\text{Belle}}{\text{L dt} = 711 \text{ fb}^{-1}}$ $L dt = 711 \text{ fb}^{-1}$ / 5.6 MeV Belle Belle $B^+ \rightarrow D(K_o^0 \pi^0) K^+$ (e) $B^- \rightarrow D(K^0_s \pi^0) K^-$ (f) $L dt = 189 \text{ fb}^{-1}$ $L dt = 189 fb^{-1}$

 $\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036,$ $\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019,$ $\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%,$ $\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%,$ $3.5 \sigma \text{ evidence for } A_{CP+} \neq A_{CP-}$

ϕ_3 combination

First Belle + Belle II combined ϕ_3 analysis.

Combined analysis using 4 methods.

Fit results

Parameters	$\phi_3(^\circ)$	r_B^{DK}	$\delta_B^{DK}(^\circ)$	$r_B^{D\pi}$	$\delta^{D\pi}_B(^\circ)$	$r_B^{D^*K}$	$\delta_B^{D^*K}(\circ)$
Best-fit value	75.2	0.115	137.8	0.0165	347.0	0.229	342
68.3% interval	[67.7, 82.3]	[0.102, 0.127]	[128.0, 146.3]	[0.0113,0.0220]	[337.4, 355.7]	[0.162, 0.297]	[326, 356]
95.4% interval	[59, 89]	[0.089, 0.138]	[116, 154]	[0.006, 0.027]	[322, 366]	[0.10, 0.37]	[306, 371]

Inputs for ϕ_3 measurement

B decay	D decay	Method	Data set $(Belle + Belle II)[fb^{-1}]$
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 \pi^0, K^- K^+$	GLW	711 + 189 Belle II
$B^+ \to D h^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 K^- \pi^+$	GLS	711 + 362 Belle II
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128 Belle II
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0
$B^+ \rightarrow D^* K^+$	$ \begin{array}{l} D^* \rightarrow D\pi^0, D \rightarrow K^0_{\rm S}\pi^0, K^0_{\rm S}\phi, K^0_{\rm S}\omega, \\ K^-K^+, \pi^-\pi^+ \end{array} $	GLW	210 + 0
$B^+ \to D^*K^+$	$D^* ightarrow D\pi^0, D\gamma, D ightarrow K^0_{ m S}\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0

Dominated by LHCb, but Belle + Belle II is also improving the precision!

ϕ_1

ϕ_1 Measurement

Time-dependent CPV

 $B\overline{B}$ is boosted ($\beta\gamma = 0.28$) Decay vertex distance Δz \rightarrow **Decay time difference** Δt **Tag side**

$\phi_1 = \arg[-(V_{cd}V_{cb}^*)/(V_{td}V_{tb})]$

Flavor tagging

PhysRevD.110.012001

Kinematics, charge, PID of charged particles \rightarrow Identify tag-side B^0 flavor

Updated Category based FastBDT flavor tagger to Graph neural network flavor tagging(GflaT). Improved performance by learning correlations between final-state particles

$B^0 \rightarrow J/\Psi K_s^0$ using GflaT Flavor tagger

PhysRevD.110.012001

Improved statistical uncertainty 8% (S) and 7% (C) compared to category-based FBDT flavor tagger!

$$S = 0.724 \pm 0.035 \pm 0.009$$

 $\Rightarrow \phi_1 = (23.2 \pm 1.5 \pm 0.6)^\circ$

$$C = -0.035 \pm 0.026 \pm 0.029$$

	Relle	I HCb
	PhysRevLett.108.171802	PhysRevLett.132.021801
S	$0.670 \pm 0.029 \pm 0.013$	$0.722 \pm 0.014 \pm 0.007$
С	$-0.015 \pm 0.021 ^{+0.045}_{-0.023}$	$0.015 \pm 0.013 \pm 0.003$

Dominant systematic uncertainty on *C*: *CP* violation in tag side *B* decays. This can be reduced by combined measurement of $B^0 \rightarrow J/\Psi K_s^0(CP - \text{odd})$ and $B^0 \rightarrow J/\Psi K_L^0(CP - even)$. Time-dependent CPV fit to $B^0 \rightarrow J/\Psi K_s$

arXiv:2410.08622 Submitted to PRD

$B^0 \to J/\Psi \pi^0$

 $S = -\sin 2\phi_1$, C = 0 if there are only tree amplitude. Tree is color and CKM suppressed \rightarrow can be used to understand the loop contribution in $B^0 \rightarrow J/\Psi K_s^0$

• Improved sensitivity by the better π^0 selection and GflaT

$$S = -0.88 \pm 0.17 \pm 0.03$$

$$C = 0.13 \pm 0.12 \pm 0.03$$

$$B = (2.02 \pm 0.12 \pm 0.10) \times 10^{-5}$$

Most precise,

and comparable with previous measurement

	Belle PhysRevD.98.112008	BaBar PhysRevLett.101.021801
S	$-0.59 \pm 0.19 \pm 0.03$	$-1.23 \pm 0.21 \pm 0.04$
С	$0.15\pm0.14^{+0.03}_{-0.04}$	$-0.2 \pm 0.19 \pm 0.03$
B(× 10 ⁻⁵)	$(1.62 \pm 0.11 \pm 0.06)$	$(1.69 \pm 0.14 \pm 0.07)$

$B^0 \to \eta' K_s$

- Dominated by the Loop process.
- In SM,
 - $|\sin 2\phi_1 S(\eta' K_s)| = 0.01 \pm 0.01$
- BSM could shift S and C!

$S = 0.67 \pm 0.10 \pm 0.04$ $C = -0.19 \pm 0.08 \pm 0.03$

	Belle	BaBar
S	$0.68 \pm 0.07 \pm 0.03$	$0.57 \pm 0.08 \pm 0.02$
С	$-0.03 \pm 0.05 \pm 0.04$	$-0.08 \pm 0.06 \pm 0.02$

World average of S ($J/\Psi K_s^0$): 0.709 \pm 0.011

 $C_{BDT}: qq$ suppression output

Consistent, and compatible precision with previous experiments!

ϕ_2

ϕ_2 Measurement

$$\boldsymbol{\phi}_2 = \arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$$

$$\frac{\Gamma(\bar{B}^{0} \to f) - \Gamma(B^{0} \to f)}{\Gamma(\bar{B}^{0} \to f) + \Gamma(B^{0} \to f)} = -C \cos \Delta m_{d} \Delta t + S \sin \Delta m_{d} \Delta t$$

$$\frac{U \operatorname{sing} b \to u \operatorname{tree} \operatorname{decays} (\operatorname{ex.} B^{0} \to \pi^{+} \pi^{-}, \rho^{+} \rho^{-}),$$

$$S = \sin(2\phi_{2}), C = 0$$
Due to the interference between and tree and loop $(b \to d),$

$$S = \sin(2\phi_{2} + 2\Delta\phi_{2}), C \neq 0$$

Need to extract the effect from the loop amplitude

Isospin analysis

Isospin relations

○: Large contribution
 ×: No contribution
 △: Smaller contribution

Granou-London isospin relations

 $\Delta \phi_2$ can be extracted using this relationship

Observables to measure ϕ_2

$\pi^+\pi^-$, $ ho^+ ho^-$	BF, S,C
$\pi^+\pi^0$, $ ho^+ ho^0$	BF, $A_{ m cp}$
$\pi^0\pi^0$, $ ho^0 ho^0$	BF, $A_{ m cp}$ or C,
	S(only $ ho^0 ho^0$)

- $\pi^0 \pi^0$, $\rho^+ \rho^0$, and $\rho^+ \rho^-$ analyses **need** π^0 **reconstruction** \rightarrow Belle II has an advantage
- $\rho\rho$ has <u>much smaller loop</u> contribution \rightarrow Dominates ϕ_2 precision.
- B → ρρ is P → VV decay Longitudinal has CP-even, and transverse is a mixture of CP-even and CP-odd.

Angular analysis is needed to extract polarization.

$B^0 ightarrow \pi^+\pi^-$ and $B^+ ightarrow \pi^+\pi^0$

PhysRevD.109.012001

Good agreement with previous measurements

Sensitivity is comparable with Belle using only a half size of the data!

C': Transformed continuum suppression output

Require 4γ reconstruction (<u>Belle II Unique</u>) from a large background due to hadronic clusters, beam BG, and so on \rightarrow Developed an MVA for γ selection

 $\rightarrow \pi^0 \pi^0$

	$\mathcal{B}(imes 10^{-6})$	С	N _{BB}
Belle II	$1.26 \pm 0.20 \pm 0.12$	$-0.06 \pm 0.30 \pm 0.05$	$388 imes 10^{6}$
Belle	$1.31 \pm 0.19 \pm 0.19$	$-0.14 \pm 0.36 \pm 0.10$	772×10^{6}
BABAR	$1.83 \pm 0.21 \pm 0.13$	$-0.43 \pm 0.26 \pm 0.05$	383.6×10^{6}

Consistent with previous experiments and Comparable sensitivity with small statistics.

 ϕ_2 extraction using $B o \pi\pi$ using Belle II results is ongoing Paper is in progress

$B^0 \rightarrow \rho^+ \rho^- \mathcal{B}$ and f_L

6D Fit for signal Extraction

Analysis challenge

- $B \rightarrow \rho \rho$ is $P \rightarrow VV$ decay \rightarrow Angular analysis is needed for polarization extraction.
- π^0 selection

Needs two soft π^0 reconstruction from ρ

 \rightarrow Suppressed backgrounds using machine learning

Continuum suppression

Large qq background was suppressed by TabNet (a kind of neural network, <u>arXiv:1908.07442</u>)

	$\mathcal{B}ig(\mathbf{10^{-6}}ig)$	f_L	N _{BB}
Belle II	29. 0 ^{+2.3} _{-2.2} ^{+3.1} _{-3.0} Total uncertainty: 13.3 %	$0.921^{+0.024}_{-0.025} \ {}^{+0.017}_{-0.015}$	$388\times\mathbf{10^{6}}$
Belle	$28.3 \pm 1.5 \pm 1.5$ Total uncertainty: 7.5%	$0.988 \pm 0.012 \pm 0.006$	772×10^{6}
BABAR	$25.5 \pm 2.1 {}^{+3.6}_{-3.9}$ Total uncertainty: 16.3%	$0.992 \pm 0.024 \ ^{+0.026}_{-0.013}$	383.6×10^{6}

<u>Consistent with previous experiments</u> \rightarrow Extract CPV parameters

NEW

$B^0 ightarrow ho^+ ho^-$ CPV + Constraint on ϕ_2 NEW

	S	С	N _{BB}
Belle II	$-0.26 \pm 0.19 \pm 0.08$	$-0.02\pm0.12^{+0.06}_{-0.05}$	388 × 10 ⁶
Belle	$-0.13 \pm 0.15 \pm 0.05$	$0.00 \pm 0.10 \pm 0.06$	772×10^{6}
BABAR	$-0.17\pm0.20^{+0.05}_{-0.06}$	$0.01 \pm 0.15 \pm 0.06$	383.6×10^{6}

- Consistent with previous experiments
- Improved precision by GFIaT flavor tagger and better selection.
- \rightarrow Extract ϕ_2 using the new result.

ϕ_2 extraction

 ϕ_2 extraction using $B \rightarrow \rho \rho$ world average $\phi_2 = (91.5^{+4.5}_{-5.4})^{\circ}$ + Belle II $\rho^+ \rho^-$ results $\rightarrow \phi_2 = (92.6^{+4.5}_{-4.8})^{\circ}$

6% improvement by Belle II results! Dominated by S of $\rho^+\rho^-$ and $\rho^0\rho^0$.

20 /21

NEW

Paper is in progress

Summary

- Belle II is a high-luminosity e^+e^- collider experiments, collected 531 fb⁻¹ of data (equivalent of BaBar, half of Belle)
- Belle II is improving the CP violation measurements using collected data, improved detectors, and improved analysis technique.
- The new GNN-based flavor tagger improved the precision by about 10%!
- $\phi_1: B^0 \to J/\Psi K_s^0, B^0 \to \eta' K_s^0, B^0 \to J/\Psi \pi^0.$ $\underline{B^0 \to J/\Psi \pi^0: \text{Significant improvement, and obtained most precise result!}}_{\phi_2: B \to \pi^+ \pi^-, \pi^+ \pi^0, \pi^0 \pi^0, B^+ \to \rho^+ \rho^0, B^0 \to \rho^+ \rho^-}$
 - $\rho^+ \rho^-$: New result, improved precision, first ϕ_2 extraction with improved precision!
 - **\$\$**_3:

<u>The first Belle + Belle II combined analysis, improved sensitivity!</u>

Systematic uncertainty

$B^0 \rightarrow J/\Psi \mathrm{K}^0_\mathrm{s}$

TABLE I. Systematic and statistical uncertainties on ε_{tag} for $B^0 \to D^{(*)-}\pi^+$ and, S and C for $B^0 \to J/\psi K_{\text{S}}^0$.

Source	$\varepsilon_{\mathrm{tag}}$ [%]	S	С
Detector alignment	0.08	0.005	0.003
Interaction region	0.16	0.002	0.002
Beam energy	0.03	< 0.001	0.001
ΔE -fit background model	0.11	0.001	0.001
ΔE -fit signal model	0.08	0.003	0.006
sWeight background subtraction	0.24	0.001	0.001
Fixed resolution-function parameters	0.07	0.004	0.004
$ au$ and Δm_d	0.06	0.001	< 0.001
$\sigma_{\Delta t}$ binning	0.04	< 0.001	< 0.001
Δt -fit bias	0.09	0.002	0.005
CP violation in B_{tag} decay		< 0.001	0.027
$B^0 \rightarrow D^{(*)-}\pi^+$ sample size		0.004	0.007
Total systematic uncertainty	0.36	0.009	0.029
Statistical uncertainty	0.43	0.035	0.026

 $B^0 \to J/\Psi \pi^0$

Table III: Systematic uncertainties on the CP asymmetries compared with the statistical uncertainties.

Source	C_{CP}	$-\eta_f S_{CP}$
Calibration with $B^0 \to D^{*-} \pi^+$	0.017	0.023
Signal extraction fit	0.003	0.017
Backgrounds composition	0.005	0.009
Backgrounds Δt shapes	< 0.001	0.001
Fit bias	0.010	0.010
Multiple candidates	< 0.001	0.002
Tracking detector misalignment	0.002	0.002
Tag-side interference	0.027	0.001
$ au_{B^0} { m and} \Delta m_d$	< 0.001	< 0.001
Total systematic uncertainty	0.034	0.032
Statistical uncertainty	0.123	0.171

Systematic uncertainty ($B^0 \rightarrow \eta' K_s^0$)

Table II: Summary of systematic uncertainties for $C_{\eta' K^0_S}$ and $S_{\eta' K^0_S}.$

Source	$C_{\eta' K_S^0}$	$S_{\eta'K_S^0}$
Signal and continuum yields	< 0.001	0.002
SxF and $B\overline{B}$ yields	< 0.001	0.006
$C_{ m BDT}$ mismodeling	0.004	0.010
Signal and background modeling	0.020	0.014
Observable correlations	0.008	0.001
Δt resolution fixed parameters	0.005	0.009
Δt resolution model	0.004	0.019
Flavor tagging	0.007	0.004
${ au_{_B}}{}^{_0} { m and} \Delta m_d$	< 0.001	0.002
Fit bias	0.003	0.002
Tracker misalignment	0.004	0.006
Momentum scale	0.001	0.001
Beam spot	0.002	0.002
<i>B</i> -meson motion in the $\Upsilon(4S)$ frame	< 0.001	0.017
Tag-side interference	0.005	0.011
$B\overline{B}$ background asymmetry	0.008	0.006
Candidate selection	0.007	0.009
Total	0.027	0.037

Systematic uncertainty $(B \rightarrow \pi^+ \pi^-, \pi^+ \pi^0)$

Branching fraction

Source	$B^0 o \pi^+\pi^-$	$B^+ o \pi^+ \pi^0$
Tracking	0.5	0.2
$N_{B\bar{B}}$	1.5	1.5
$f^{+-/00}$	2.5	2.4
π^0 efficiency		3.8
K_{S}^{0} efficiency		
CS efficiency	0.2	0.7
PID correction	0.1	0.2
ΔE shift and scale	0.2	2.0
$K\pi$ signal model	0.2	< 0.1
$\pi\pi$ signal model	0.1	< 0.1
$K\pi$ feed-across model	0.1	0.1
$\pi\pi$ feed-across model	0.2	0.1
$K_S^0 K^+$ model		
$B\bar{B}$ model		0.5
$q\bar{q}$ flavor model		
Multiple candidates	< 0.1	0.3
Total	3.0	5.2

Direct CPV

Source	$B^+ o \pi^+ \pi^0$
ΔE shift and scale	0.002
$K_S^0 K^+$ model	
$B\bar{B}$ background asymmetry	
$q\bar{q}$ background asymmetry	
$q\bar{q}$ flavor model	
Fitting bias	0.007
Instrumental asymmetry	0.004
Total	0.008

Systematic uncertainty $(B^0 \rightarrow \pi^0 \pi^0)$

Source	${\mathcal B}$	\mathcal{A}_{CP}
π^0 efficiency	8.6~%	n/a
$\Upsilon(4S)$ branching fractions $(1 + f^{+-}/f^{00})$	2.5~%	n/a
Continuum-suppression efficiency	1.9~%	n/a
$B\overline{B}$ -background model	1.7~%	0.034
Sample size $N_{B\bar{B}}$	1.5~%	n/a
Signal model	1.2~%	0.021
Continuum-background model	0.9~%	0.025
Wrong-tag probability calibration	n/a	0.008
Total systematic uncertainty	9.6~%	0.048
Statistical uncertainty	15.9~%	0.303

Systematic uncertainty $(B^+ \rightarrow \rho^+ \rho^0)$

Source	${\mathcal B}$	f_L	\mathcal{A}_{CP}
Tracking	0.9%	n/a	n/a
π^0 efficiency	5.7%	n/a	n/a
PID and continuum-supp. eff.	1.2%	n/a	n/a
$N_{B^+B^-}$	3.1%	n/a	n/a
Instrumental asymmetry correction	n/a	n/a	0.005
Single candidate selection	2.2%	1.1%	0.037
Signal model	0.10%	0.02%	0.002
Continuum bkg. model	0.04~%	1.2%	0.003
$B\overline{B}$ bkg. model	0.05%	0.08%	0.002
Fit biases	4.4%	1.1%	0.010
Data-simulation mismodeling	8.0%	2.1%	0.002
Peaking background CP asymmetries	0.3%	0.1%	0.046
Total	11.5%	2.9%	0.060

Systematic uncertainty ($B^0 \rightarrow \rho^+ \rho^-$)

Source	\mathcal{B} [%]	$f_L[10^{-2}]$
Tracking	± 0.54	
π^0 eff.	± 7.67	
PID	± 0.08	
\mathcal{T}_C	± 2.87	
MC stat.	± 0.24	± 0.2
f_{+-}/f_{00}	± 2.60	
N_{BB}	± 1.45	
Best candidate selection	± 0.55	± 0.3
SxF ratio	$^{+2.97}_{-2.45}$	$^{+0.2}_{-0.3}$
\mathcal{B} 's of peaking backgrounds	$+\overline{0.94}$ -0.98	± 0.1
$\tau^+\tau^-$ background yield	$+0.65 \\ -0.69$	± 0.0
Signal model	$^{+1.14}_{-2.02}$	± 0.2
$qar{q} \mathrm{model}$	+0.49 -0.51	$^{+0.1}_{-0.2}$
$B\bar{B}$ model	+1.00 -0.40	+0.3 -0.1
$ au^+ au^- ext{ model}$	+0.17	+0.0
Peaking model	+1.37	+0.3
Interference	± 1.01 ± 1.20	± 0.5
Data-MC mis-modeling	+3.51	+0.8
Fit bias	± 1.03	± 1.2
Total systematic uncertainty	+10.29	+1.7
Statistical uncertainty	-9.75 + 7.93 - 7.58	$^{-1.5}_{+2.4}_{-2.5}$

Source	$S[10^{-2}]$	$C[10^{-2}]$
\mathcal{B} 's of peaking backgrounds	$^{+0.6}_{-0.5}$	± 0.1
au au background yield	± 0.9	$+0.0 \\ -0.1$
Data-MC mis-modeling	$^{+0.6}_{-1.1}$	$+1.5 \\ -0.6$
Best candidate selection	± 1.3	± 1.9
SxF ratio	+0.5	+0.7
Signal model	+1.1	+0.3
$a\bar{a}$ model	+2.2	± 0.4
$B\bar{B}$ model	+0.9	+0.7
$\tau \tau$ model	± 0.0	$^{-0.5}$ ± 0.0
Peaking model	+0.8	+0.2
Fit bias	$^{-0.4}_{+2.0}$	$^{-0.4}_{\pm 0.6}$
Interference	+2.0	± 0.0 ± 1.7
Resolution	+3.4	+1.9
Event fraction	$^{-4.4}_{+0.9}$	-1.4 + 0.6
Δt PDF for $q\bar{q}$ and $B\bar{B}$	$^{-1.0}_{+3.8}$	$\pm 0.0 + 0.7$
Δt i Di foi qq and DD Dhysics Daramotors	$^{-1.8}_{+1.4}$	-0.1 + 0.3
Tag side interference	-1.6	± 0.3 ± 2.1
When m to m frontier	± 0.3 ± 0.2	± 2.1
Wrong tag fraction	-0.3 + 3.8	$\pm 0.3 \\ +4.2$
Background <i>CP</i> Violation	-3.6 + 0.8	-3.7
CP Violation in TP signal	-0.2	-0.4
Mis-Alignment	± 1.4	± 0.5
Total systematic uncertainty	$^{+8.3}_{-7.8}$	+0.1 -5.4
Statistical uncertainty	± 18.8	± 12.1

 $B^0 \to
ho^+
ho^0$

 $B \rightarrow \rho\rho$: Another way for ϕ_2 extraction $B^0 \rightarrow \rho^+ \rho^-$ has much smaller loop contribution compared to $\pi\pi$ $\rightarrow \rho\rho$ system has a better sensitivity to ϕ_2

	$\mathcal{B}(\mathbf{10^{-6}})$	f_L
Belle II	${\bf 23.2^{+2.2}_{-2.1}\pm 2.7}$	$0.943^{+0.035}_{-0.033}\pm 0.027$
Belle	$31.7 \pm 7.1^{+3.8}_{-6.7}$	$0.948 \pm 0.106 \pm 0.021$
BABAR	$23.7 \pm 1.4 \pm 1.4$	$0.950 \pm 0.015 \pm 0.006$

Good agreement with previous experiments. Belle analysis was done with only $78fb^{-1}$ Data \rightarrow Needs to be improved by Belle II

arXiv:2206.12362