

Search for new phenomena beyond the Standard Model at Belle II

Junewoo PARK (UTokyo)
on behalf of the Belle II collaborations

BCVSPIN 2024, Kathmandu, Nepal Dec 9-13, 2024

Belle and Belle II Experiments

- Asymmetric energy collisions of electrons and positrons
- Its energy corresponds to $\sqrt{s} = 10.58$ GeV, which is the resonance of $\Upsilon(4S)$
 - $\Upsilon(4S)$ mainly decays into B meson pair

Belle experiment

- **1999 2010**
- $\mathcal{L}_{int} = 1 \ ab^{-1}$
- $e^+(3.5 \text{ GeV}) e^-(8 \text{ GeV})$ accelerated by KEKB

Belle II experiment

- 2019 current
- $\mathcal{L}_{int} = 0.42 \ ab^{-1}$ by 2023
- $e^+(4 \text{ GeV}) e^-(7 \text{ GeV})$ accelerated by SuperKEKB

Belle and Belle II Experiments

- The entire kinematics are known in Belle II experiment.
 - c.m. energy is 10.58 GeV and two B mesons are produced
 - → Belle II has an advantage on the decay modes with invisible particles, like neutrino
- Belle II experiment is not only B factory, but also tau factory

[Phys.Rept. 274 (1996) 287-376]

we can also enjoy tau physics!

$$\sigma(e^+e^- \to \Upsilon(4S)) \sim 1.1 \text{ nb @ 10.58 GeV}$$
 $\sigma(e^+e^- \to \tau^+\tau^-) \sim 0.9 \text{ nb @ 10.58 GeV}$

$$B^+ \to K^+ \nu \bar{\nu}$$

[Phys. Rev. D 109, 112006]

- $B^+ \to K^+ \nu \bar{\nu}$ decay
 - Flavour-changing neutral currents process
 - BR = $(5.6 \pm 0.4) \times 10^{-6}$ at SM [Phys. Rev. D 107, 119903 (2023)]
- This decay can give a clue for non-SM particles
 - Leptoquark [Phys. Rev. D 98, 055003]
 - Axion [Phys. Rev. D 102, 015023]
 - Dark sector mediator [Phys. Rev. D 101, 095006]

• There are previous studies in Babar, Belle, and Belle II experiments

experiment	Upper limit (90% CL)	\mathcal{L}_{int}	Tagging method	reference
BABAR	3.7×10^{-5}	$429 fb^{-1}$	hadronic	Phys. Rev. D 87, 112005
BABAR	1.3×10^{-5}	$418 fb^{-1}$	semileptonic	Phys. Rev. D 82, 112002
Belle	5.5×10^{-5}	$711 fb^{-1}$	hadronic	Phys. Rev. D 87, 111103
Belle	1.9×10^{-5}	$711 fb^{-1}$	semileptonic	Phys. Rev. D 96, 091101
Belle II	4.1×10^{-5}	$63 fb^{-1}$	inclusive	Phys. Rev. Lett. 127, 181802

$$B^+ \to K^+ \nu \bar{\nu}$$

- $362 fb^{-1}$ on-resonance data is used for this analysis
- Two tagging methods are done
 - hadronic tagging analysis (HTA)
 - inclusive tagging analysis (ITA)
- In HTA, one side of B meson is reconstructed by hadronic decay modes

- Exact kinematics of B_{tag} is known
- high purity
- low efficiency

• In ITA, the second B meson is not explicitly reconstructed

 $\overline{\nu}$ ν B_{sig}^{-} Y(4S) e^{+}

- * ROE: rest of event
 Information of remaining particles (ROE) is used
- low purity
- high efficiency

- For the background suppression, boosted decision tree (BDT) is used as the multivariate analysis technique
 - For HTA, total 12 variables are used
 - most powerful variable:
 - ightarrow sum of remaining energy in the electromagnetic calorimeter ($E_{
 m extra}$)
 - For ITA, total 12 and 32 variables are used for two consecutive BDTs
 - most powerful variables:

 \rightarrow (Energy of ROE – a half of beam energy)

in c.m. frame

→ event shape variable

- $B^+ \to K^+ J/\psi \ (\to \mu^+ \mu^-)$ is used for the signal efficiency validation
 - K^+J/ψ is replaced by $K^+\nu\bar{\nu}$ Monte Carlo sample

• The lower beam energy sample is used to correct the $e^+e^- \to q\bar{q}$ (q=u,d,s,c) background

MC

- Another BDT is trained to distinguish data vs MC
- Output of this BDT is used as a correction factor

$$B^+ \to K^+ \nu \bar{\nu}$$

- binned maximum likelihood fit is done to extract the signal yield
- Signal regions
 - For HTA, signal yield extraction is done on $\eta(\mathrm{BD}T_h)$ space
 - $\neg \eta(BDT_h)$: variables related to the efficiency as a function of BDT cut
 - For ITA, signal yield extraction is done on $\eta(\mathrm{BDT}_2) \times q_{\mathrm{rec}}^2$ space
 - $\neg \eta(BDT_2)$: variables related to the efficiency as a function of BDT cut
 - $q_{\rm rec}^2$: invariant mass square of the neutrino pair

[Phys. Rev. D 109, 112006]

result

■ Hadronic tag:

$$BR(B^+ \to K^+ \nu \bar{\nu}) = \left[1.1^{+0.9}_{-0.8}(\text{stat})^{+0.8}_{-0.5}(\text{syst})\right] \times 10^{-5}$$

• Inclusive tag:

$$BR(B^+ \to K^+ \nu \bar{\nu}) = [2.7 \pm 0.5(\text{stat}) \pm 0.5(\text{syst})] \times 10^{-5}$$

Combined result:

$$BR(B^+ \to K^+ \nu \bar{\nu}) = \left[2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})\right] \times 10^{-5}$$

$$\tau^- \rightarrow \mu^+ \mu^- \mu^-$$
[JHEP09(2024)062]

$$\tau^- \to \mu^+ \mu^- \mu^-$$

- Belle experiment is not only B factory but also tau factory
- $\tau^- \rightarrow \mu^+ \mu^- \mu^-$ decay
 - Hard to occur in SM (smaller than $\mathcal{O}(10^{-50})$) [Eur. Phys. J. C 79 (2019) 84]
- This decay can be enhanced by new physics
 - Inverse Seesaw [J. Phys. Conf. Ser. 888 (2017) 012029]
- $424 fb^{-1}$ data is used for the analysis
- There are previous studies

experiment	Upper limit (90% CL)	\mathcal{L}_{int}	Tagging method	reference
CLEO	1.9×10^{-6}	$4.79 fb^{-1}$	one-prong	Phys. Rev. D 57 (1998) 5903
BABAR	3.3×10^{-8}	$468 fb^{-1}$	one-prong	Phys. Rev. D 81 (2010) 111101
LHCb	4.6×10^{-8}	$3 fb^{-1}$	-	JHEP 02 (2015) 121
ATLAS	3.8×10^{-7}	$20.3 fb^{-1}$	-	Eur. Phys. J. C 76 (2016) 232
CMS	8.0×10^{-8}	$33.2 fb^{-1}$	-	JHEP 01 (2021) 163

$$\tau^- \rightarrow \mu^+ \mu^- \mu^-$$

- Two analysis methods are done in this analysis
 - one-prong tagging analysis (for the validation)
 - inclusive tagging analysis

- The space is divided into two hemispheres
 - determine a vector \vec{n}_T that the sum of inner products with particles' momentum is maximized
 - lacktriangle Then, we can define two hemispheres by the plane perpendicular to $ec{n}_T$
 - All three μ are required to be included in the same hemisphere

[JHEP09(2024)062]

$\tau^- \rightarrow \mu^+ \mu^- \mu^-$

- BDT is used to suppress backgrounds
 - total 32 variables are used
 - the most discriminating variables:
 - mass of ROE
 - $^{\square}$ (Energy of ROE a half of beam energy) in c.m. frame
 - transverse momentum of the second highest momentum muon
 - transverse momentum of the lowest momentum muon
 - cross-validation (k-folding) algorithm is used to reduce the impacts from the statistical fluctuation

$$\tau^- \rightarrow \mu^+ \mu^- \mu^-$$

- Counting method is used in $(M_{3\mu}, \Delta E_{3\mu})$ plane
 - $M_{3\mu}$: invariant mass of three muons
 - $\Delta E_{3\mu}$: (Energy of three muons a half of beam energy) in c.m. frame
- The signal region and sideband region are defined
 - The signal region (yellow line):
 - elliptical region is obtained from the MC sample
 - The sideband region (region between red and yellow lines)
 - $^{-}$ $\pm 20~\delta_{\it M}$, $\pm 10~\delta_{\Delta\it E}$ wide rectangular region, where δ is expected resolution
- The number of expected background is obtained from the
 plane (BDT output) X (distance from signal peak)

 $\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)$

Expected $CL_s \pm 2\sigma$

Expected $CL_s \pm 1\sigma$ Expected CL_s median

Observed CL_s

$$\tau^- \rightarrow \mu^+ \mu^- \mu^-$$

- Result
 - $N_{\rm exp} = 0.7^{+0.6}_{-0.5}$: the expected number of background events
 - $N_{obs} = 1$: the number of observed events

■
$$BR(\tau^- \to \mu^+ \mu^- \mu^-) = (2.1^{+5.1}_{-2.4} \pm 0.4) \times 10^{-9}$$

$$\square BR(\tau^- \to \mu^+ \mu^- \mu^-) = \frac{N_{obs} - N_{exp}}{\mathcal{L} \times 2\sigma_{\tau\tau} \times \epsilon_{3\tau}}$$

- Upper limit of branching ratio = 1.9×10^{-8} at 90% confidence level
 - → World's best limit 🞉

0.8

0.6

[Phys. Rev. D 110, 072020]

- Measuring $R(D^{(*)})$ is the direct test for the lepton flavour universality (LFU)
 - $R(D^{(*)}) = \frac{BR(\overline{B} \to D^{(*)} \tau \overline{\nu}_{\tau})}{BR(\overline{B} \to D^{(*)} \ell \overline{\nu}_{\ell})}$
 - In SM, [Phys. Rev. D 107, 052008]

$$R(D) = 0.298 \pm 0.004$$

$$R(D^*) = 0.254 \pm 0.005$$

- Several systematic uncertainties are canceled for $R(D^{(*)})$, like quark mixing element $|V_{cb}|$
- $R(D^{(*)})$ can be changed by new physics
 - Leptoquark [Phys. Rev. D 104, 055017]
 - W' boson [JHEP12(2016)059]

ullet Currently, it shows some tension from SM prediction: $\sim 3.17 \sigma$

- $189 fb^{-1}$ on-resonance data is used for this analysis
- Hadronic tagging method is used

• The following decay modes are reconstructed for the signal side

particle	Decay modes	remark
au	$e^- ar{ u}_e u_ au$ $\mu^- ar{ u}_\mu u_ au$	Leptonic mode
D^{*+}	$D^{0}\pi^{+}$ $D^{+}\pi^{0}$	
D^{*0}	$D^{0}\pi^{0}$	
D^+	$K^{-}\pi^{+}\pi^{+}$ $K_{S}^{0}\pi^{+}$ $K^{-}K^{+}\pi^{+}$	
D^{0}	$K^{-}\pi^{+}\pi^{0}$ $K^{-}\pi^{+}\pi^{-}\pi^{+}$ $K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$ $K^{-}\pi^{+}$ $K_{S}^{0}\pi^{+}\pi^{-}$ $K_{S}^{0}\pi^{0}$ $K^{-}K^{+}$ $\pi^{-}\pi^{+}$	

- ullet Dominant background comes from the misreconstructed D^* candidates:
 - (Correctly reconstructed D) + (low-momentum pion not from D^*)
 - misreconstructed D with low-momentum pion
- ullet This fake D^* yield is calibrated from the sideband for each D^* mode
 - The sideband region is defined in ΔM_{D^*} region, where $\Delta M_{D^*} = M_{D^*} - M_D$
 - The fit is done on the sideband, to obtain the data-simulation ratio of yield of fake D^*

- To extract the signal yield, extended binned maximum likelihood fit is done
- Signal region
 - (the remaining energy on the electromagnetic calorimeter) × (missing mass square)
- The probability density functions are constructed for each D^* modes

- Result
 - $R(D^*) = 0.262^{+0.041}_{-0.039}(stat)^{+0.035}_{-0.032}(syst)$
 - \rightarrow Statistical uncertainty ($^{+15.7\%}_{-14.7\%}$) is comparable to Belle result (13.0%), even though this analysis uses much smaller data size (189 fb^{-1} vs 711 fb^{-1})
 - consistent with SM prediction

Summary

- Belle II experiment has advantages to B and tau physics
 - Target energy is appropriate for B and tau production
 - decays with invisible particles can be analyzed
- Broad range of analysis have been successfully done in Belle II experiment
 - EWP: $B^+ \to K^+ \nu \bar{\nu}$ → first evidence for the $B^+ \to K^+ \nu \bar{\nu}$ decay (3.5 σ)
 - LFV: $\tau^- \to \mu^+ \mu^- \mu^-$ → World's best result
 - LFU: *R*(*D**)
 - → comparable statistical uncertainty, with much smaller data size, compared to Belle experiment

Backup

$$\tau^- \rightarrow \mu^+ \mu^- \mu^-$$

- The validation is done on the sideband region
 - Agreement on (BDT output) is checked
 - After the BDT selection,
 - □ The expected number of event in sideband = $2.0^{+0.7}_{-0.5}$
 - The observed number of event in sideband = 3

• The number of expected background is obtained from (BDT output) and distance from signal peak

BDT output

• expected $N_{\rm D} = N_C \times \frac{N_B}{N_A}$

