

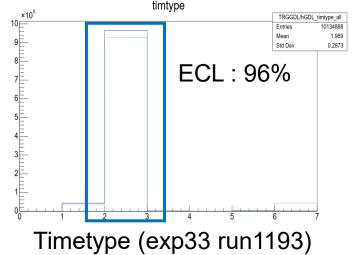
ECLTRG TC timing Calibration and Event Timing Study

Seoul National University Hobin Lee

18th December 2024

50th B2GM Parallel

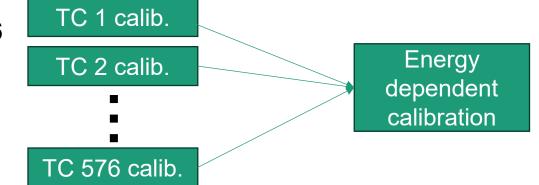
Contents


• EventT0

- Introduction
- Possible improvement from ECLTRG
- TC Timing Calibration
 - TC by TC energy dependent calibration
- Event Timing
 - Trigger timing determination logic
- Summary

EventT0

- EventT0 is relative time difference between event timing and trigger timing.
 - EventT0 = (event timing) (trigger timing)
- SVD sampling is affected by EventT0 resolution
 - In higher luminosity environment, the number of sampling points should be reduced (because of deadtime).
 - For 3points sampling, < 10ns is required but current resolution > 10ns for E < 300MeV.
- ECLTRG may improve resolution from trigger side
 - Most of trigger timing(~95%) is determined by ECLTRG in exp33.
 - Trigger timing with consistent quality : TC timing calibration
 - Improve trigger timing itself : ECLTRG timing determination logic

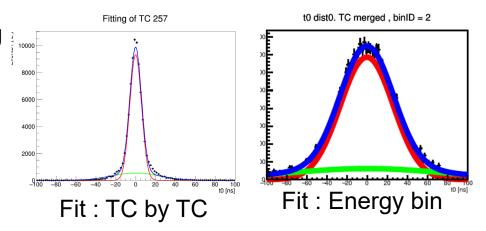


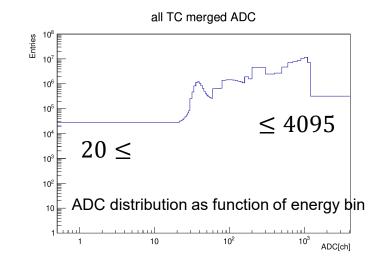
ata All runs in prerelease-07-00-00d/s-proc4_cDST/e0026 bhabha_calib, hadron_calib, radmumu_calib and tight_mumu_or_highmu_calib TimeType = ECL Calibration by odd number runs Test (validation) by even number runs

Method

Data

- First, extract integer CC for each TC and apply for each TC
- Then, merge all TC and extract global energy dependent CC(integer)
- CC = int(TC by TC CC) + int(Edep CC)
 - Denote it as "sequential"
 - Since no enough statistics for individual TC + edep. calibration
- $(t0_{i, cal} = t0_i C_i)$ *i* is TC number or Energy bin.
 - Making $t0_{i, cal} = 0$ (no bias condition)

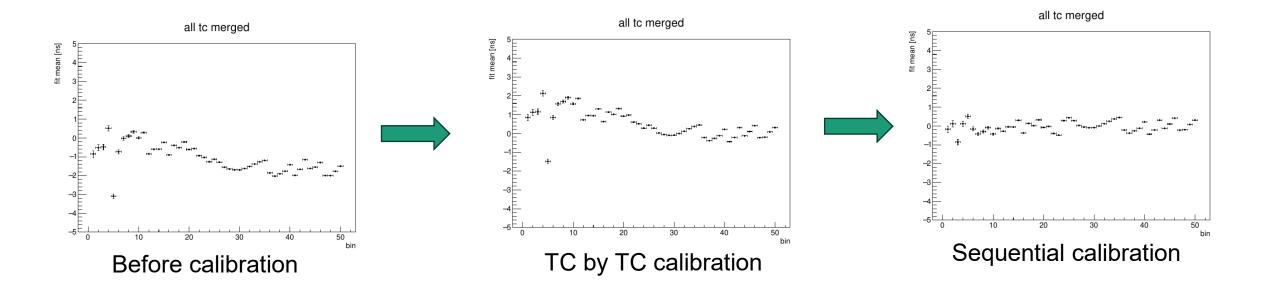



TC by TC calibration

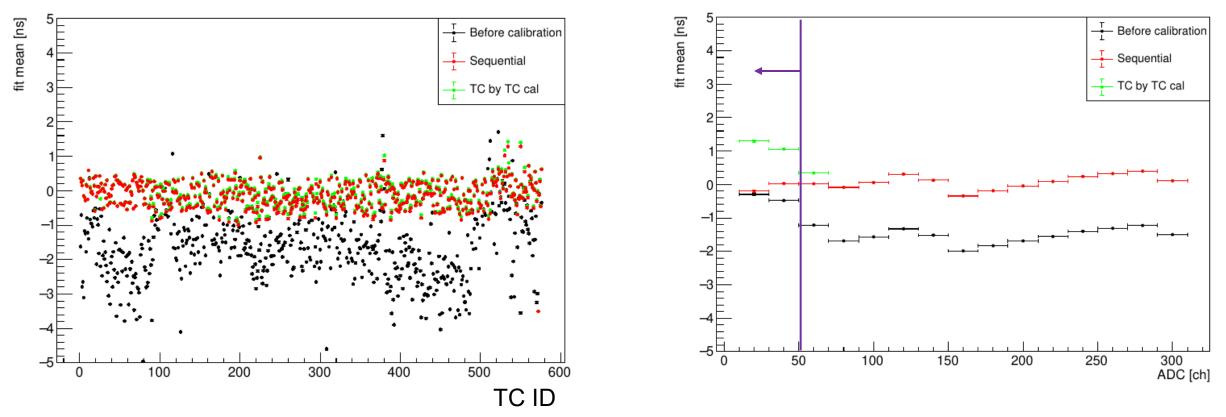
- ECL trigger timing is determined by the most energetic TC timing
- EventT0 = (subdetector timing) (the most energetic TC timing)
 Event timing
 trigger timing
- Fitting to extract CCs from 576 TCs.
- Fitting with binned likelihood fit
 - 2 Gaussian sharing mean with different sigma

Energy dependent calibration

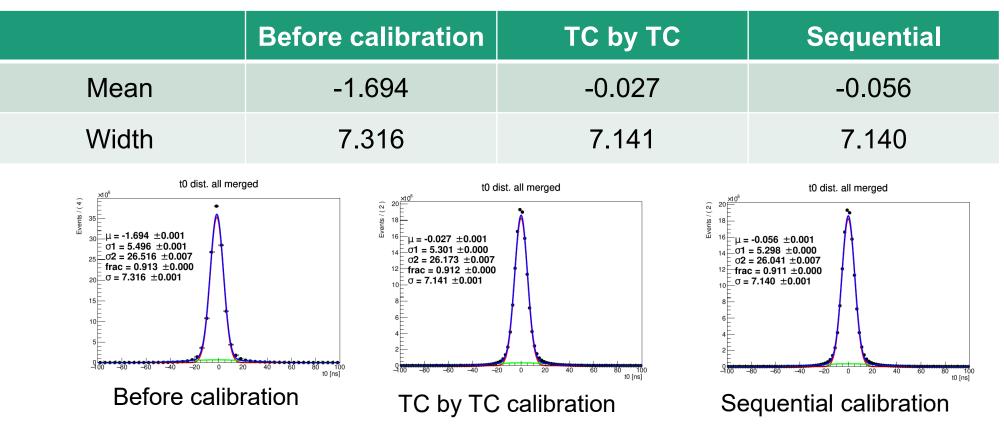
- 50 binning for 12bits ADC[0,4095]
 - Dense binning for low energy and coarse binning for high energy
- EventT0 per each energy bin(50 distributions)
- Fitting with binned likelihood fit
 - 2 Gaussian sharing mean with different sigma

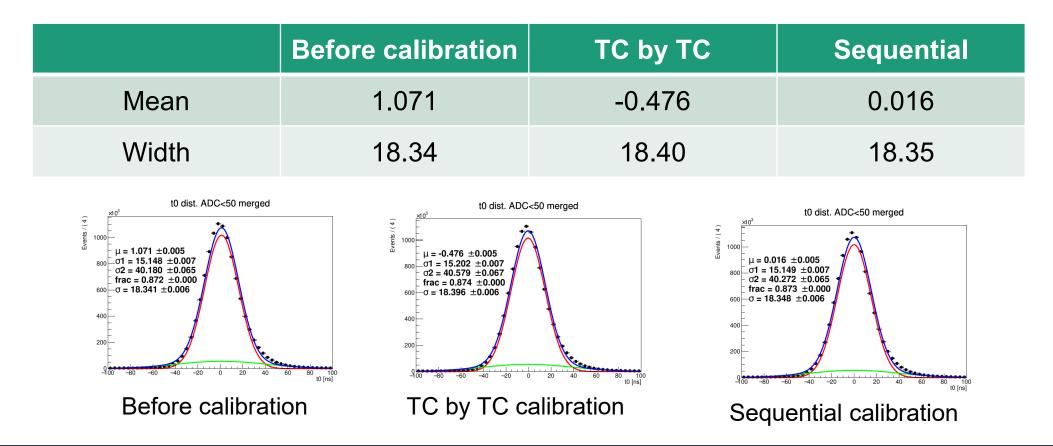


• Flow of Calibration : T0 mean as the function of energy bins

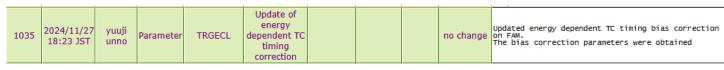


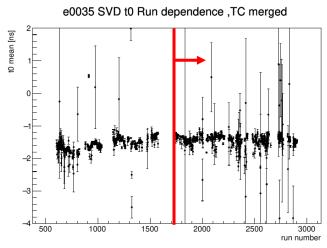
• X axis is Energy bin (defined in backup), Y axis is gaussian mean

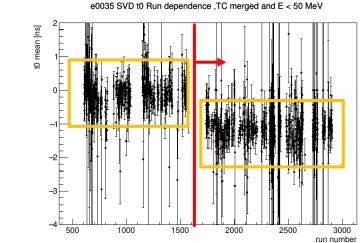

- Result : T0 mean as the function of TCID(left) and TC energy(right)
 - TC by TC and sequential has almost same means after ADC > 70



- Fit result for all energy
 - There is almost no difference between TC by TC and sequential calibration.
 - The reason is in the front page : Almost same means after ADC > 70


- Fit result in the region where TC E < 50 ADC
 - Sequential method significantly reduces bias on mean.


ECLTRG



Calibration constants are uploaded to FAM since 24.11.27

- Check with e0035 SVD's OnlineEventT0 mean:
 - No major change in t0 mean in all energy regions, but change can be seen in low energy region (E <50ADC)

- Updating CC obtained from recent experiment number will be done.
 - Current CC is too old.
 - It seems that update will be needed when subdetector's configuration is changed.

Trigger Timing Determination Logic

ECLEnergy

hecle

ECLEnergy [ch]

EventT0 width

- Data
 - All runs in prerelease-07-00-00d/s-proc4_cDST/e0026
 - bhahba_all_calib, hadron_calib, radmumu_calib and tight_mumu_or_highmu_calib

The number of hits

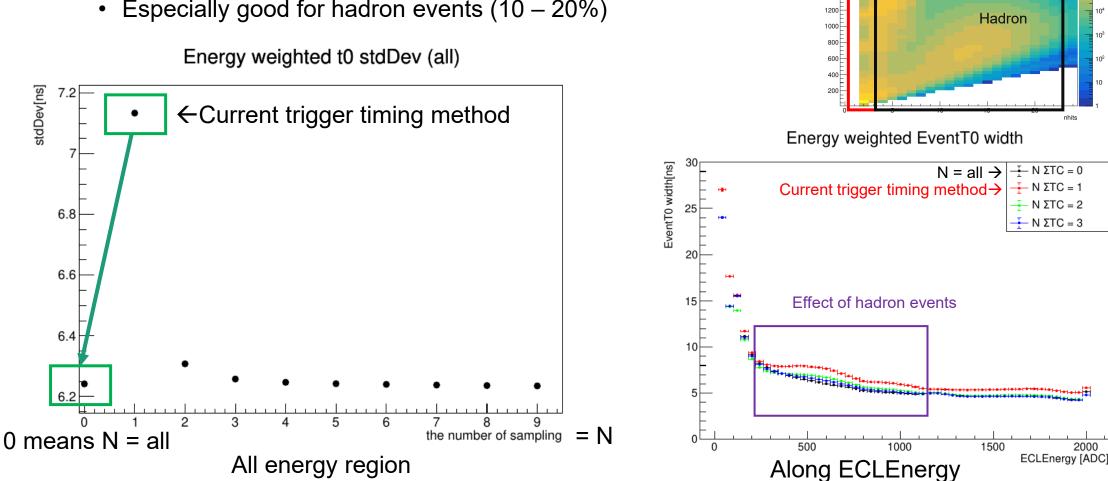
hnhit 9.2384370+

- TimeType = ECL
- nTC > 1
- Energy weighted trigger timing from ECL
 - (trigger timing) = $\frac{\sum_{i=1}^{N} E_{i} t_{i}}{\sum_{i=1}^{N} E_{i}}$
 - Subscript *i* means TC number, E_i is TC energy and t_i is TC timing
 - summing up to N'th energetic TC
 - Find optimized N that minimizes widths of EventT0 distribution.
 - EventT0 = CurrentEventT0 + (most energetic TC timing) (energy weighted trigger timing)

Current trigger timing method

Trigger Timing Determination Logic

Number of hits vs ECLEnergy


ow-multiplicity

1800

CLE 1600 hnhit ecle

3.742

- N = all shows good result.
 - We can expect about 12% of decrease of EventT0 width
 - Especially good for hadron events (10 20%)

stdDev[ns]

- TC Timing Calibration
 - TC by TC energy dependent calibration : Reducing bias in low energy region
 - But consistent update of CC will be needed.

- Trigger Timing
 - Energy weighted trigger timing : N = all, hadron event's EventT0 widths are reduced by ~20%.
 - Advantage of N = all
 - Sorting energy is not needed. (whose time complexity is $O(NlogN) \sim O(N^2)$)
 - Same time complexity with finding maximum TC energy : O(N)
 - More discussion will be done.

backup

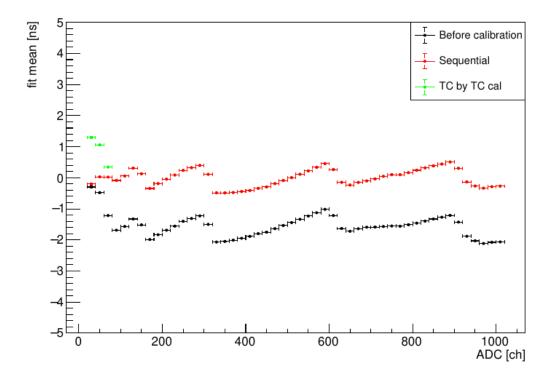
ECL trigger

Belle II

- ~9000 CsI(TI) crystal
- 576 Trigger Cells (TCs)
- DSPshaper -> FAM -> TMM -> ETM -> GRL/GDL
 - FAM : FADC Analysis Module
 - TMM : Trigger Merger Module
 - ETM : ECL Trigger Master
- FAM determine timing and energy of TC
 - Timing of TC : mainly FADC waveform fitting
 - E ~ 5 MeV / ADC

TC map

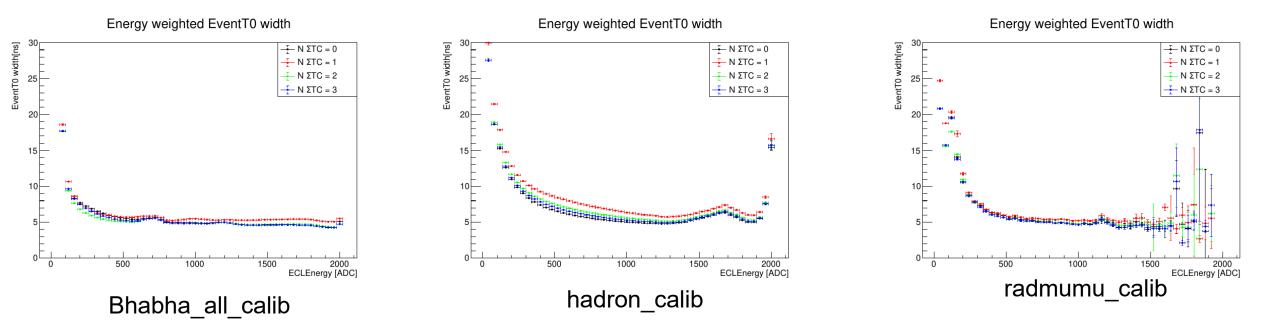
								← TC θ ID								θ 🔶
	15	14	13	12	11	10	9	8	7	6	5	4				Ļ
17 16	8	16	16	16	16	16	16	16	16	16	16	16] 1	¢		3 2 1
	8	16	16	16	16	16	16	16	16	16	16	16	2	¢		(
15 16 1	8	16	16	16	16	16	16	16	16	16	16	16	3	10	1	16 14 14 1
15 14 2	8	16	16	16	16	16	16	16	16	16	16	16	4	Ĕ	2	14 14
15 16 3	8	16	16	16	16	16	16	16	16	16	16	16	5		3	16 14 14 3
15 14 4	8	16		16	16	16	16	16	16	16	16	16	6		4	14 14
15 16 5 15 14 6	8	16 16	16 16	16 16	16 16	16 16	16 16	16 16	16 16	16 16	16 16	16 16	7 8	+	5 6	16 14 14 5 14 14 14 5
15 16 7	8	16	16	16	16	16	16	16	16	16	16	16	9		7	16 14
15 14 8	8	16		16	16	16	16	16	16	16	16	16	10		8	14 14 14 7
15 16 9	8	16	16	16	16	16	16	16	16	16	16	16	11		9	16 14
15 14 10	8	16	16	16	16	16	16	16	16	16	16	16	12		10	
15 16 11	8	16	16	16	16	16	16	16	16	16	16	16	13		11	46 44
15 14 12	8	16	16	16	16	16	16	16	16	16	16	16	14		12	
15 16 13	8	16		16	16	16	16	16	16	16	16	16	15		13	16 14
15 14 14	8	16	16	16	16	16	16	16	16	16	16	16	16		14	
15 16 15	8	16	16	16	16	16	16	16	16	16	16	16	17		15	16 14 14 15
15 14 16	8	16	16	16	16	16	16	16	16	16	16	16	18		16	
15 16 17	8	16		16		16	16	16	16	16	16		19		17	
15 14 18	8	16	16	16	16	16	16	16	16	16	16	16	20		18	14 14
15 16 19	8	16	16	16	16	16	16	16	16	16	16	16	21		19	11 19
15 14 20	8	16	16	16	16	16	16	16	16	16	16	16	22		20	
15 16 21	8	16		16	16	16	16	16	16	16	16	16	23		21	14 21
15 14 22	8	16		16	16	16	16	16	16	16	16	16	24		22	14 14
15 16 23	8	16		16	16	16	16	16	16	16 16	16	16	25		23	14 23
15 14 24 15 16 25	8	16	16	16	16	16	16	16	16		16	16	26		24	14 14
	8	16	16	16	16	16	16	16	16	16	16	16	27 28		25	14 25
	8	16 16		16 16	16 16	<u>16</u> 16	<u>16</u> 16	16 16	<u>16</u> 16	16 16	<u>16</u> 16	16 16	28		26	40 44
15 16 27 15 14 28	8	16	16	16	16	16	16	16	16	16	16	16	30		27 28	
15 16 29	8	16	16	16	16	16	16	16	16	16	16	16	31		29	16 14
15 14 30	8	16	16	16	16	16	16	16	16	16	16	16	32		30	
15 16 31	8	16	16	16	16	16	16	16	16	16	16	16	33		31	16 14
15 14 32	8	16	16	16	16	16	16	16	16	16	16	16	34		32	
	8	16	16	16	16	16	16	16	16	16	16	16	35			
BE	8	16	16	16	16	16	16	16	16	16	16	16	36			EE
DE						В	R									FE → z(e ⁻)


ECLTRG

- [0,20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
 [30,31], [32,33], [34,35], [36,37], [38,39], [40,41], [42,43], [44,45], [46,47], [48,49],
 [50,51], [52,53], [54,55], [56,57], [58,59], [60,64], [65,69], [70,74], [75,79], [80,89],
 [90,99], [100,109], [110,119], [120,129], [130,139], [140,149], [150,159], [160,179],
 [180,199], [200,299], [300,399], [400,499], [500,599], [600,699], [700,799],
 [800,899], [900,999], [100,1099], [1100,1199], [1200,4095]
- 50 bins

Binning definition

- T0 mean as the function of TC energy (not TC energy bin)
 - Wider ADC region



Belle II

EventT0 widths for different samples

- X axis : ECLEnergy
- Why is good for hadron : N is large, and energy of each hit is small.

