
Neural Network L1 Trigger / GRL Upgrade
Deven Misra
Kavli IPMU | UTokyo

1

Introduction

2

Motivation
The existing and dark sector
lines for the L1 trigger will require
higher e8ciency to limit overall
trigger rate as SuperKEKB
luminosity increases in the future.

Previous studies show promising
results for increasing e8ciency
(relative to current cut-based
algorithms) using a neural-
network based trigger algorithm
for event selection. This
approach also has the potential to
include other trigger lines if not
limited by FPGA resources.

Comparing neural network trigger
with existing algorithms (Nomaru

2023)

𝜏

𝜏

3

Previous Work (2023)
Inputs: ECLTRG Clusters

Output:

Previous study included
limited optimization, thus
leaves signiQcant room for
improvement on these
results.

Model Architecture from Previous NNTRG
Study (Nomaru 2023)

{𝐸, 𝜃, 𝜙} × # of Clusters

𝑃 (𝜏) ∈ [0, 1]

4

Neural Network

5

Requirements
To take in all of the data from the ECL for a -channel decay, we require
a minimum of nodes in the input layer.

We require latency due to limited buffer size.

In principle, we aim for the lowest FPGA resource utilization possible
without degrading e8ciency or latency. In practice, the Qrst target was
simply , and the present target is around .

𝜏
24

< 500 ns

< 100% 50%

6

Model Structure

A feed-forward dense neural network with two hidden layers

7

Training
8

Evaluation
9

EGciency
10

High-Level Synthesis

11

Synthesis
We generate FPGA
Qrmware from the
PyTorch model using high-
level synthesis ().

In this process, we can
conQgure bitwidths for
weights, biases, and
activations for each layer
independently.

We can choose to
optimize for either latency
or hardware utilization
depending on relative
constraints for each.

hls4ml

12

https://fastmachinelearning.org/hls4ml/index.html

Performance

Nomaru 2023 Current→

13

Latency & Utilization Estimates
+---------+---------+----------+----------+-----+-----+----------+
| Latency (cycles) | Latency (absolute) | Interval | Pipeline |
+---------+---------+----------+----------+-----+-----+----------+
| min | max | min | max | min | max | Type |
+---------+---------+----------+----------+-----+-----+----------+
| 20| 23| 0.100 us | 0.115 us | 4| 4| dataflow |
+---------+---------+----------+----------+-----+-----+----------+

+-----------------+---------+-------+--------+--------+-----+
| Name | BRAM_18K| DSP48E| FF | LUT | URAM|
+-----------------+---------+-------+--------+--------+-----+
DSP	-	-	-	-	-
Expression	-	-	0	594	-
FIFO	0	-	725	4060	-
Instance	261	587	26626	51320	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	1296	-
Register	-	-	144	-	-
+-----------------+---------+-------+--------+--------+-----+					
Total	261	587	27495	57270	0
+-----------------+---------+-------+--------+--------+-----+					
Available	2842	672	891424	445712	0
+-----------------+---------+-------+--------+--------+-----+					
Utilization (%)	9	87	3	12	0
+-----------------+---------+-------+--------+--------+-----+

14

Optimization

15

Quantization (Methods)
Uniform Quantization

Symmetric & Asymmetric Quantization

()

𝑄(𝑟) = Int(𝑟/𝑆) − 𝑍

Gholani et. al 2021

16

https://arxiv.org/pdf/2103.13630

Quantization (PyTorch)
Post-Training Static Quantization (int8)

Problem: Natively quantized PyTorch modules are not supported by hls4ml.

Solution: Use and export to Open Neural Network Exchange
(ONNX) format before synthesis.

==
Quantized Model Size(Mb): 0.009874
Unquantized Model Size(Mb): 0.012074
Quantized Model is smaller by 18.22%.
Accuracy of Quantized Model: 204341.34179510426
Accuracy of Unquantized model: 204341.38712601995
Average Inference time of Quantized Model: 36.60524570941925
Average Inference time of Unquantized Model: 37.378313064575195
Quantized Model is faster by 2.07%.
==

Brevitas

17

https://xilinx.github.io/brevitas/

Quantization (Brevitas)
Quantization-Aware Training (int8)

18

Conclusion

19

Summary
Continuing development of new ML-based Qrmware trigger using ECL
data

Current model shows considerable improvement over previous study,
which already outperforms existing trigger algorithms

𝜏

AUC ≈ 0.95 → AUC ≈ 0.99

20

Next Steps
(Continued) Optimization

Obtain updated latency and resource utilization estimates

Re-train quantized model with data from loose trigger run

Explore advanced quantization techniques ()

Hyperparameter optimization ()

(Continued) Evaluation

Evaluate model performance after QAT with new data

Compute e8ciencies for each Qnal state separately

Firmware Implementation

Generate IP core using Vivado/Vitis HLS

HQG

RayTune/Optuna

21

https://arxiv.org/pdf/2405.00645
https://docs.ray.io/en/latest/tune/index.html

