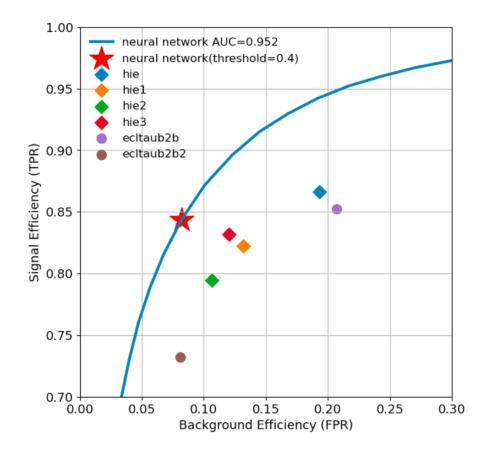
Neural Network L1 Trigger / GRL Upgrade Deven Misra

Kavli IPMU | UTokyo

Introduction

Motivation

- The existing τ and dark sector lines for the L1 trigger will require higher efficiency to limit overall trigger rate as SuperKEKB luminosity increases in the future.
- Previous studies show promising results for increasing efficiency (relative to current cut-based algorithms) using a neural-network based trigger algorithm for τ event selection. This approach also has the potential to include other trigger lines if not limited by FPGA resources.

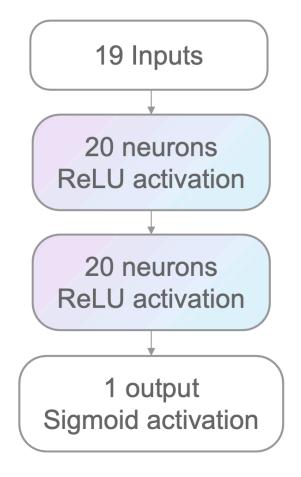


Comparing neural network trigger with existing algorithms (Nomaru 2023)

- Previous Work (2023)
 - Inputs: ECLTRG Clusters
 - $\{E, \theta, \phi\} \times \#$ of Clusters
 - Output:

$P(\tau) \in [0,1]$

 Previous study included limited optimization, thus leaves significant room for improvement on these results.



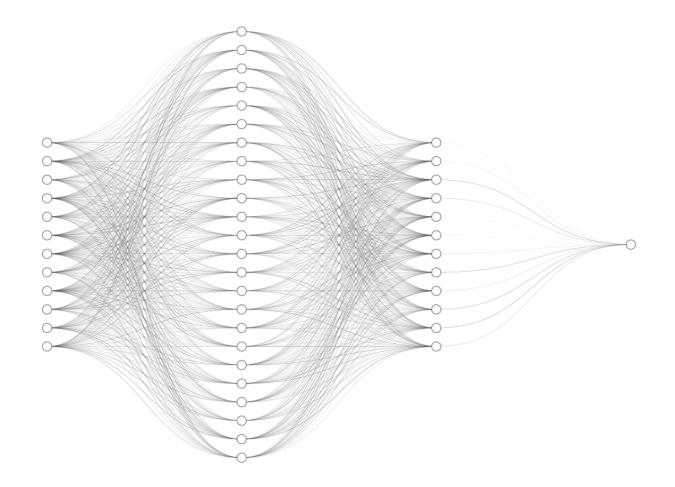
Model Architecture from Previous NNTRG Study (Nomaru 2023)

Neural Network

Requirements

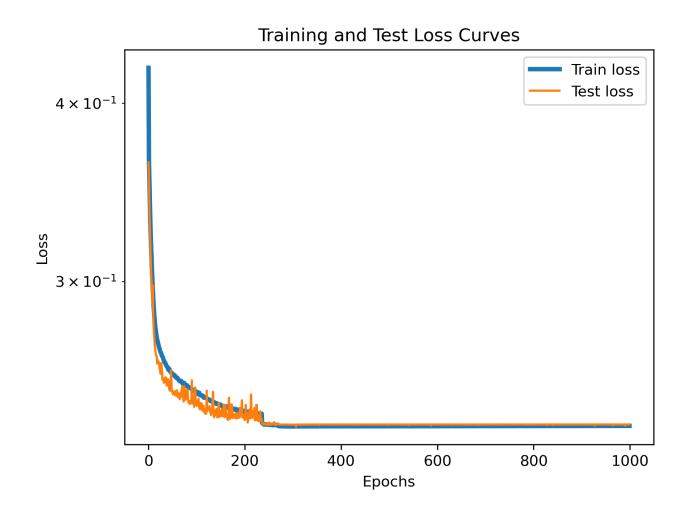
- To take in all of the data from the ECL for a $\tau\text{-}{\rm channel}$ decay, we require a minimum of 24 nodes in the input layer.
- We require latency < 500 ns due to limited buffer size.
- In principle, we aim for the lowest FPGA resource utilization possible without degrading efficiency or latency. In practice, the first target was simply < 100%, and the present target is around 50%.

Model Structure

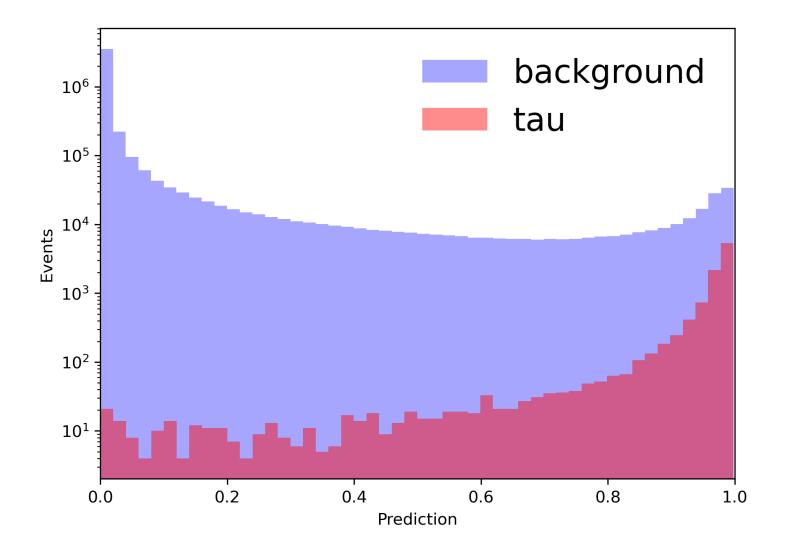


A feed-forward dense neural network with two hidden layers

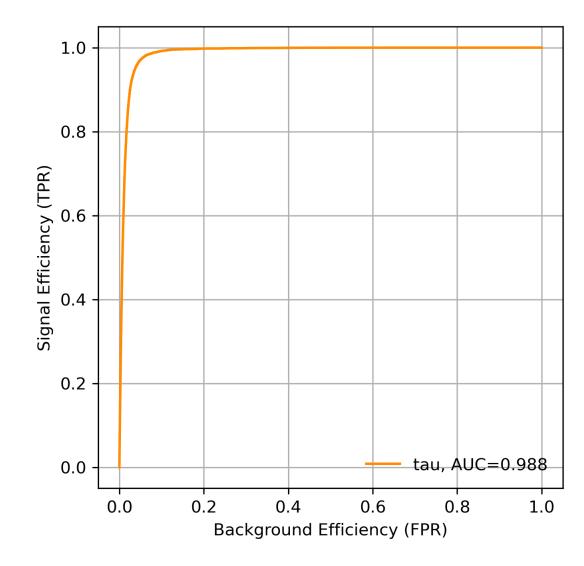
Training



Evaluation



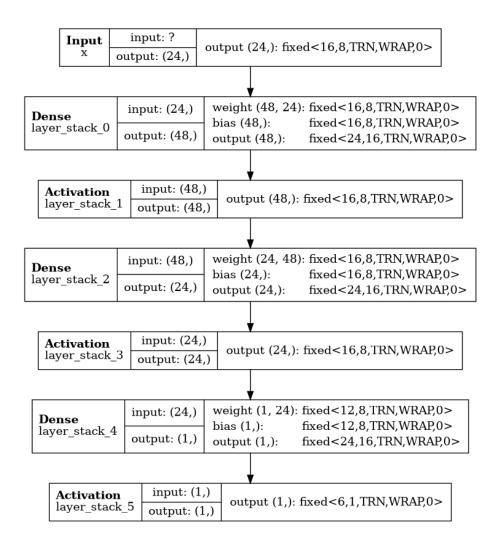
Efficiency



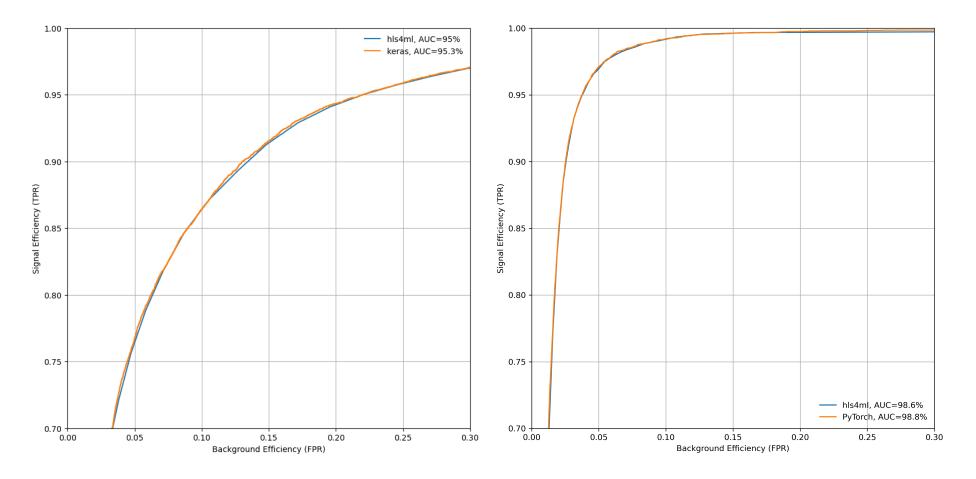
High-Level Synthesis

Synthesis

- We generate FPGA firmware from the PyTorch model using highlevel synthesis (hls4ml).
- In this process, we can configure bitwidths for weights, biases, and activations for each layer independently.
- We can choose to optimize for either latency or hardware utilization depending on relative constraints for each.



Performance



Nomaru 2023 → Current

Latency & Utilization Estimates

+-	•			•	Interval		• •	
	min	max	min	max	min	max	Туре	
	20	23	0.100 us	0.115 us	4	4	dataflow	

+	L		L		L4
Name	BRAM_18K	DSP48E	FF	LUT	URAM
+					 _
Expression	i –i	-	0	594	i – i
FIFO	0	-	725	4060	i – i
Instance	261	587	26626	51320	i – i
Memory	–	-	-	—	-
Multiplexer	–	-	-	1296	-
Register	-	-	144	-	-
+ Total	261	587	27495	57270	0
Available	2842	672	891424	445712	0
Utilization (%)	9	87	3	12	0 +
•					

Optimization

Quantization (Methods)

Uniform Quantization

 $Q(r) = \operatorname{Int}(r/S) - Z$

Symmetric & Asymmetric Quantization

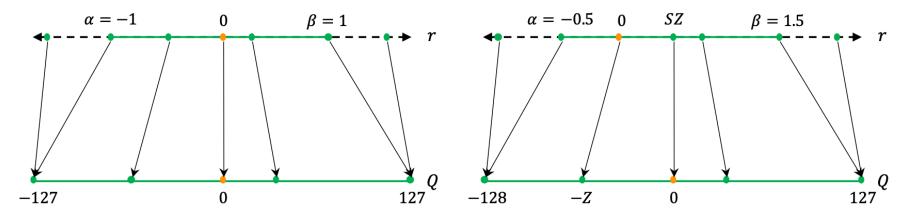


Figure 2: Illustration of symmetric quantization and asymmetric quantization. Symmetric quantization with restricted range maps real values to [-127, 127], and full range maps to [-128, 127] for 8-bit quantization.

(Gholani et. al 2021)

Quantization (PyTorch)

Post-Training Static Quantization (int8)

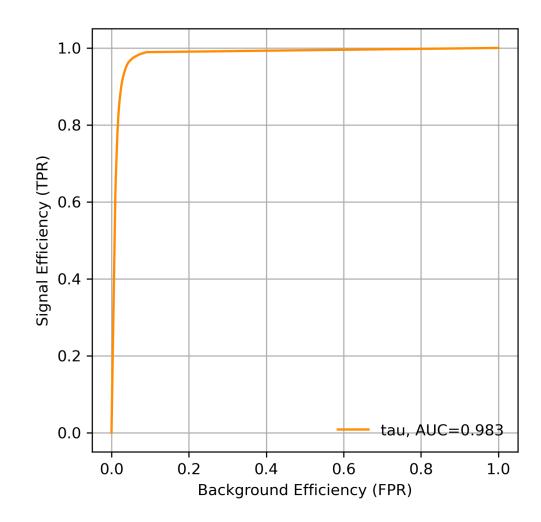
Quantized Model Size(Mb): 0.009874 Unquantized Model Size(Mb): 0.012074 Quantized Model is smaller by 18.22%. Accuracy of Quantized Model: 204341.34179510426 Accuracy of Unquantized model: 204341.38712601995 Average Inference time of Quantized Model: 36.60524570941925 Average Inference time of Unquantized Model: 37.378313064575195 Quantized Model is faster by 2.07%.

Problem: Natively quantized PyTorch modules are not supported by hls4ml.

Solution: Use **Brevitas** and export to Open Neural Network Exchange (ONNX) format before synthesis.

Quantization (Brevitas)

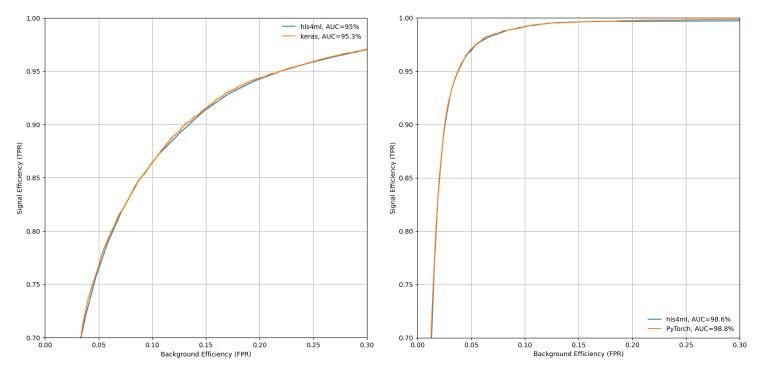
Quantization-Aware Training (int8)



Conclusion

Summary

- Continuing development of new ML-based au firmware trigger using ECL data
- Current model shows considerable improvement over previous study, which already outperforms existing trigger algorithms



AUC $\approx 0.95 \rightarrow AUC \approx 0.99$

Next Steps

(Continued) Optimization

- Obtain updated latency and resource utilization estimates
- Re-train quantized model with data from loose trigger run
- Explore advanced quantization techniques (HQG)
- Hyperparameter optimization (RayTune/Optuna)

(Continued) Evaluation

- Evaluate model performance after QAT with new data
- Compute efficiencies for each final state separately

Firmware Implementation

• Generate IP core using Vivado/Vitis HLS