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Introduction
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Motivation
The existing  and dark sector
lines for the L1 trigger will require
higher e8ciency to limit overall
trigger rate as SuperKEKB
luminosity increases in the future.

Previous studies show promising
results for increasing e8ciency
(relative to current cut-based
algorithms) using a neural-
network based trigger algorithm
for  event selection. This
approach also has the potential to
include other trigger lines if not
limited by FPGA resources.

Comparing neural network trigger
with existing algorithms (Nomaru

2023)

𝜏

𝜏
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Previous Work (2023)
Inputs: ECLTRG Clusters

Output:

Previous study included
limited optimization, thus
leaves signiQcant room for
improvement on these
results.

Model Architecture from Previous NNTRG
Study (Nomaru 2023)

{𝐸, 𝜃, 𝜙} × # of Clusters

𝑃 (𝜏) ∈ [0, 1]

4



Neural Network
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Requirements
To take in all of the data from the ECL for a -channel decay, we require
a minimum of  nodes in the input layer.

We require latency  due to limited buffer size.

In principle, we aim for the lowest FPGA resource utilization possible
without degrading e8ciency or latency. In practice, the Qrst target was
simply , and the present target is around .

𝜏
24

< 500 ns

< 100% 50%
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Model Structure

A feed-forward dense neural network with two hidden layers
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Training
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Evaluation
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EGciency
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High-Level Synthesis
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Synthesis
We generate FPGA
Qrmware from the
PyTorch model using high-
level synthesis ( ).

In this process, we can
conQgure bitwidths for
weights, biases, and
activations for each layer
independently.

We can choose to
optimize for either latency
or hardware utilization
depending on relative
constraints for each.

hls4ml
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https://fastmachinelearning.org/hls4ml/index.html


Performance

 
Nomaru 2023  Current→
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Latency & Utilization Estimates
+---------+---------+----------+----------+-----+-----+----------+
|  Latency (cycles) |  Latency (absolute) |  Interval | Pipeline |
+---------+---------+----------+----------+-----+-----+----------+
|   min   |   max   |    min   |    max   | min | max |   Type   |
+---------+---------+----------+----------+-----+-----+----------+
|       20|       23| 0.100 us | 0.115 us |    4|    4| dataflow |
+---------+---------+----------+----------+-----+-----+----------+

+-----------------+---------+-------+--------+--------+-----+
|       Name      | BRAM_18K| DSP48E|   FF   |   LUT  | URAM|
+-----------------+---------+-------+--------+--------+-----+
|DSP              |        -|      -|       -|       -|    -|
|Expression       |        -|      -|       0|     594|    -|
|FIFO             |        0|      -|     725|    4060|    -|
|Instance         |      261|    587|   26626|   51320|    -|
|Memory           |        -|      -|       -|       -|    -|
|Multiplexer      |        -|      -|       -|    1296|    -|
|Register         |        -|      -|     144|       -|    -|
+-----------------+---------+-------+--------+--------+-----+
|Total            |      261|    587|   27495|   57270|    0|
+-----------------+---------+-------+--------+--------+-----+
|Available        |     2842|    672|  891424|  445712|    0|
+-----------------+---------+-------+--------+--------+-----+
|Utilization (%)  |        9|     87|       3|      12|    0|
+-----------------+---------+-------+--------+--------+-----+
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Optimization
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Quantization (Methods)
Uniform Quantization

Symmetric & Asymmetric Quantization

( )

𝑄(𝑟) = Int(𝑟/𝑆) − 𝑍

Gholani et. al 2021
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https://arxiv.org/pdf/2103.13630


Quantization (PyTorch)
Post-Training Static Quantization (int8)

Problem: Natively quantized PyTorch modules are not supported by hls4ml.

Solution: Use  and export to Open Neural Network Exchange
(ONNX) format before synthesis.

==================================================
Quantized Model Size(Mb): 0.009874
Unquantized Model Size(Mb): 0.012074
Quantized Model is smaller by 18.22%.
Accuracy of Quantized Model: 204341.34179510426
Accuracy of Unquantized model: 204341.38712601995
Average Inference time of Quantized Model: 36.60524570941925
Average Inference time of Unquantized Model: 37.378313064575195
Quantized Model is faster by 2.07%.
==================================================

Brevitas
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https://xilinx.github.io/brevitas/


Quantization (Brevitas)
Quantization-Aware Training (int8)
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Conclusion
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Summary
Continuing development of new ML-based  Qrmware trigger using ECL
data

Current model shows considerable improvement over previous study,
which already outperforms existing trigger algorithms

 

𝜏

AUC ≈ 0.95 → AUC ≈ 0.99

20



Next Steps
(Continued) Optimization

Obtain updated latency and resource utilization estimates

Re-train quantized model with data from loose trigger run

Explore advanced quantization techniques ( )

Hyperparameter optimization ( )

(Continued) Evaluation

Evaluate model performance after QAT with new data

Compute e8ciencies for each Qnal state separately

Firmware Implementation

Generate IP core using Vivado/Vitis HLS

HQG

RayTune/Optuna
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https://arxiv.org/pdf/2405.00645
https://docs.ray.io/en/latest/tune/index.html

