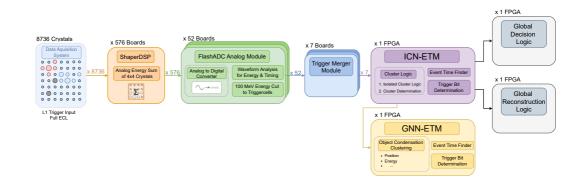


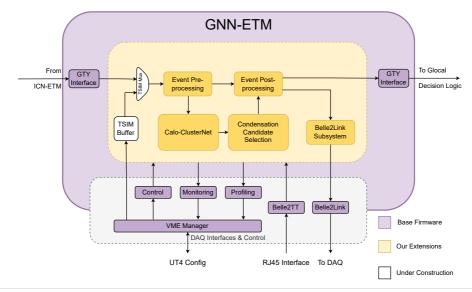
GNN-ETM: A Hardware Perspective

TRG Parallel Session - 50th B2GM

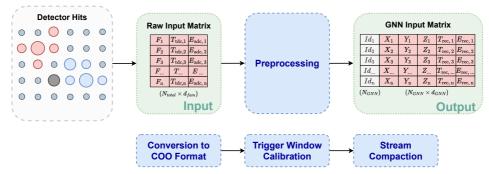
M. Neu, I. Haide, T. Justinger, T. Rädler, V. Dajaku, J. Becker, T. Ferber | Monday 24th February, 2025


www.kit.edu

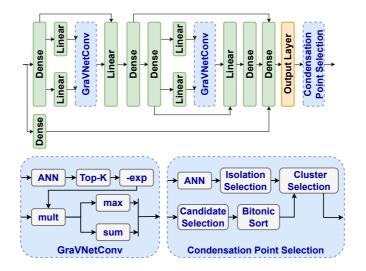
- Today, I will give you an overview of the GNN-ETM architecture
- In addition, I will describe two paths for deployment:
 - (a) the full integrated implementation on the UT4 (AMD Ultrascale XCVU-190). This implementation has been demonstrated on Christmas. Big Thanks to Unno-San!
 - (b) a prototype implementation on the AMD VCK190.
- I will go in details about our current simulation setup for the GNN-ETM firmware.
- Last, I will give an overview of our plans for GNN-ETM from the hardware side.


ECL Trigger Overview

The GNN-ETM

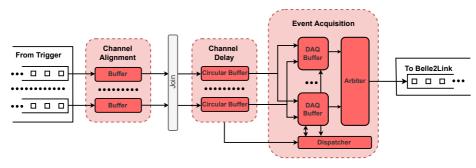


Event Preprocessing

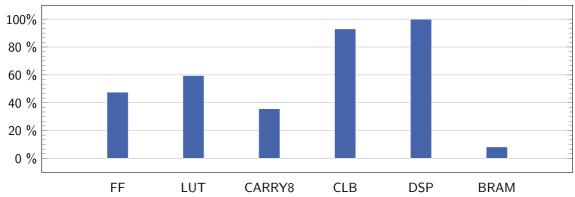


- Extract all TCs above a 100 MeV, conversion into Coordinate-Offset-Offset (COO) format.
- Apply trigger window and reconstruct event T₀
- Conversion of E_{adc} into E_{rec} in GeV and T_{tdc} into E_{rec} in us.
- Written in Chisel, I plan to extend this module as a FuseSoc IP Core

CaloClusterNet



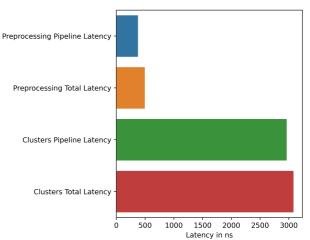
Belle2Link Buffer



- Adapted from ICN-ETM. Rewrite in Chisel.
- Configurable number of input channels, automatic alignment of different input streams-
- Configurable buffer depth and delay.
- I plan to make this module available as FuseSoC IP Core.

GNN-ETM Utilization

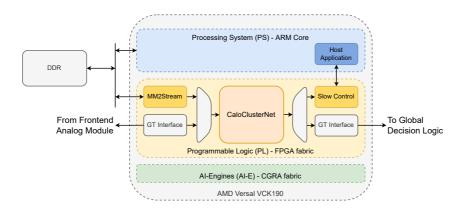
- I have implemented the GNN-ETM firmware on the UT4 (XCVU 190).
- $\hfill \hfill \hfill$

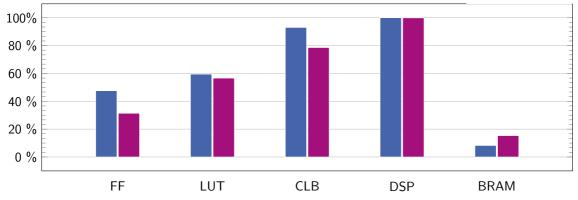

UT4

GNN-ETM Latency

- We use the following system frequencies:
 - $f_{sys} = 127 \text{ MHz}$
 - $f_{pre} = 254 \text{ MHz}$
 - $f_{gnn} = 127 \text{ MHz}$
- V31 requires a total latency of 3 us, which is above the required 1.6 us.
- Two options for improving the overal latency
 - Switch f_{gnn} to 254 MHz
 - Optimizations on algorithmic level

Channel


 We have to improve the latency for using GNN-ETM actively in the first-level trigger system.

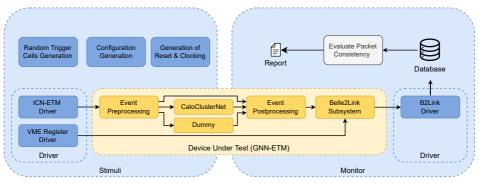

The VCK190 Prototype

VCK190 Implementation

- I have implemented the CaloClusterNet on the AMD VCK190.
- No utilization of AI-Engines.
- The implementations required around 3 h.

UT4 VCK190

- \blacksquare I have successfully implemented our Caloclusternet GNN on FPGA, achieving a latency of $3\,{\rm us.}$
- We have tested our model during physics run during Christmas. Big thanks to Unno-San :).
- We find that, the utilization on the VCK190 is slightly lower than on the UT4, even though VCK190 is smaller than UT4.
- However, timing is much easier to achieve on the VCK190.
- In order to include GNN-ETM in the active trigger decision, we must
 - (a) reduce the overal latency below $1.6\,\mathrm{us}$
 - (b) find remaining inconsistencies between the software model and the hardware implementation.



- Debugging on directly on hardware is often time-consuming.
- Therefore, I have implemented a wide range of simulation options for our system.
- I differentiate between two levels of simulations
 - **Control-level Behavioral Simulation:** Make sure that there is no deadlock in the system, interfaces to upstream systems, e.g. DAQ readout, work as expected. Check integrity of data packets.
 - Data-level Behavioral Simulation: Check the actual values inside data packets or on streaming interfaces. Full validation of the digital design.

Control-Level Behavioral Simulation

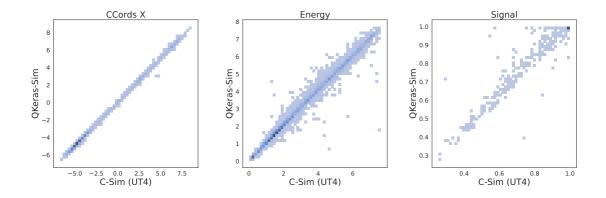
- We identify test cases for various operation conditions: Writing registers, link instabilities, transmission of B2Link packets.
- I have written test cases in CoCoTb using Python. QuestaSim 2023.4 for all simulations.
- In the future, solved bugs will receive a specific test case which covers the issue.

Data-Level Behavioral Simulations

- Based on the control-level simulations, we also conduct data-level simulations
- From top to bottom, accuracy and simulation time increases
- Post-Route-Sim is extracted from Design Check Point for a given firmware version.
- End-To-End-Sim is currently under construction.

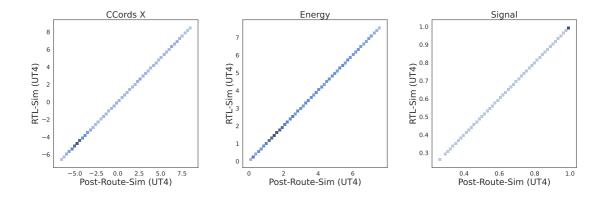
Name	Description
QKeras-Sim	Limited accuracy, optimized for efficient training.
C-Sim	Bit-accurate simulation before Vitis HLS.
Co-Sim	Cycle-accurate behavioral simulation using Vitis HLS
RTL-Sim	Cycle-accurate behavioral simulation after Vitis HLS.
Post-Route-Sim	Cycle-accurate behavioral simulation after synthesis, placement and routing
End-To-End-Sim	Cycle-accurate behavioral simulation including Pre- & Postprocessing, excluding Belle2Link
Hardware	Actual execution on the target platform, either UT4 or VCK190.

Simulation Results for UT4 (GNN-ETM)


- \checkmark indicates a 100% match
- • indicates a reasonable good match
- X indicates something is very wrong
- So far, I was not able to reproduce the errors we saw on the Christmas runs with GNN-ETM

• Evaluations on hardware are required

	Q-Keras-Sim	C-Sim	Co-Sim	RTL-Sim	Post-Route-Sim	End-To-End-Sim	Hardware
QKeras-Sim	\checkmark						
C-Sim	•	\checkmark					
Co-Sim	•	\checkmark	\checkmark				
RTL-Sim	•	\checkmark	\checkmark	\checkmark			
Post-Route-Sim End-To-End-Sim	•	\checkmark	\checkmark	\checkmark	\checkmark		
Hardware	×	×	×	×	×		\checkmark


C-Sim (UT4) vs QKeras-Sim Examples

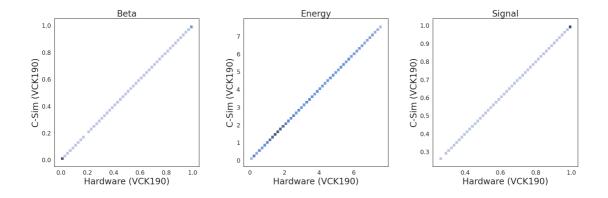
RTL-Sim (UT4) vs Post-Route-Sim (UT4) Examples

Design Study on VCK 190

- $\hfill I have implemented CaloClusterNet without preprocessing, on the VCK190$
- Achieved 100% match between C-Sim and hardware execution
- Bug which I had reported to AMD has not yet been answered
- Workaround: Changing *ap_ufixed* to *ap_fixed* resolved the issue.
- Downside is a slight increase in hardware utilization

Name	UT4	VCK190	Comment		
QKeras-Sim	\checkmark	\checkmark	Identical		
C-Sim	\checkmark	\checkmark			
Co-Sim	\checkmark	\checkmark			
RTL-Sim	\checkmark	\checkmark			
Post-Route-Sim	\checkmark	×	Could be implemented, but time consuming		
End-To-End-Sim	√*	X	Infeasible on VCK190		
Hardware	\checkmark	\checkmark	No Preprocessing on VCK190		

Simulation Results for VCK190



- \checkmark indicates a 100% match
- • indicates a reasonable good match
- X indicates something is very wrong
- AMD Toolchain works as expected
- It seems our model QKeras differs from our hardware implementation. Investigation ongoing

	Q-Keras-Sim	C-Sim	Co-Sim	RTL-Sim	Hardware
QKeras-Sim	\checkmark				
C-Sim	•	\checkmark			
Co-Sim	•	\checkmark	\checkmark		
RTL-Sim	٠	\checkmark	\checkmark	\checkmark	
Hardware	•	\checkmark	\checkmark	\checkmark	\checkmark

Hardware (VCK190) vs C-Sim (VCK190) Examples

- I will be here at KEK until 6th March.
- I am currently learning how to do local and cosmic runs at Belle II
- I have prepared a list of tests for my stay at KEK, using GNN-ETM V0.31
 - **Issue a** Check if the bitstream generation was faulty for some reason. Same synthesis as baseline, but alternative implementation strategy.
 - Issue b Check with dummy, whether features are transmitted correctly via B2LinkBuffer.
 - Issue 3 We would like to check the alignment between ICN- and GNN-ETM in depth, by adjusting the delay parameter.
 - Issue 5 We would like to adjust the beta and isolation criteria for the cluster selection algorithms separately.

- During our Christmas runs, we observed a number of open issues. Most importantly, the algorithmic performance differs between the hardware implementation and our software mode.
- I am to find the root cause of this issue as soon as possible
- I have prepared a list of issues in Gitlab (here)
- I would like to migrate the GNN-ETM repository into FuseSoc.

- I have implemented our CaloClusternet on the GNN-ETM and started to validate its functionality in the experiment **during christmas**. Big Thanks to Unno-San for his great support!
- I have set up a comprehensive simulation environment for the GNN-ETM in order to identify all remaining issues which we found during the Christmas runs.
- I will continue to improve the current firmware version, reducing the overall latency and preparing the system for deployment.
- In parallel, we will conduct studies on the scalability of the Caloclusternet in the first-level trigger, also considering an ECL upgrade.