

Upgrade L1 Neural Track Trigger for Run 2

Christian Kiesling
Max-Planck-Institute for Physics
for the AI Trigger Group of Belle II

Overview:

- Upgrade of z-Trigger
- New project: Displaced Vertex Trigger
- Schedule & Milestones

Al Trigger Group at Belle II

KIT ITIV

- Marc Neu
- Kai Unger
- Jürgen Becker

KIT ETP

- Lea Reuter
- Greta Heine
- Isabel Haide
- Torben Ferber

New 3D Hough Track Model ("3DH")

- Extend traditional 2D ($ω=1/p_T$, φ=azimuth angle) Hough space by a third dimension, the (binned) polar angle θ
- Track finding with axial and stereo track segments (->3D)
- Peak finding in 3D Hough space

S. Skambraks (MPI & LMU)

Main advantages:

- more TS (9 vs 5)
 - -> suppress fakes
- no need to choose STS by min drift time
 - -> find "correct" STS by default
- force track model to originate from IP (x, y, z) = (0, 0, 0)
 - -> "natural" suppress of candiates far from IP
- 3D track candidates come with θ estimate:
 - -> improve z resolution

New 3D Hough Track Model ("3DH")

Positive (negative) tracks in upper (lower) ω -halfplane

Peak finding in 3D hough space -> $< \phi >$, $< \omega >$, $< \theta >$

Implicit 3DHough constraint: track origin = IP (0,0,0) -> "natural" suppression of tracks from "outside" of IP

Expected Performance of z-Trigger Upgrade ("3DHDNN")

Extended inputs to network

- "standard" priority wire ($\Delta \varphi$, α , DT)
- plus entire wire pattern in TS
 (10 additional binary inputs per TS)
- with condition: ADC count > min (remove bg from electronic cross-talk & synchr. photons)

Multi-hidden-layer network ("deep learning")

- Several architectures investigated
- "optimal" configuration with 4 hidden layers and fewer (!) nodes when using 3D track model (easier to implement in HW)
- added 3rd output: classification CL (CL = 1, for |z| < 1 cm, else CL = 0

Nework trained with data from 2022, tested with recent extremely high background runs (fall 2024)

Dark Matter Detection: Belle II's Potential

dark Higgs

Popular models: Inelastic Dark Matter production

see, e.g. D. Smith and N. Weiner. Inelastic dark matter. *Physical Review D*, 64(4), jul 2001.

E. Izaguirre, G. Krnjaic, and B. Shuve. Discovering inelastic thermal relic dark matter at colliders. *Physical Review D*, 93(6), mar 2016.

- -> common feature of dark mediators: very long lifetimes compared to SM weak decays (K_a, Λ)
- -> "feably interacting particles" -> vertices displaced from IP

 e^+

How to Trigger on Feebly Interacting Neutral Particles

M. Dürr et al., https://arxiv.org/abs/2012.08595)

Basic problem:

Track finding with Hough method needs a vertex hypothesis! e.g. 3DHough: (x,y,z,) = (0,0,0).

Here: vertex unknown, possibly not even pointing to IP

Solution (2D tracks):
Divide the CDC axial wire planes into a set of "Macro Cells", serving as origins for the Hough transforms

FPGA:

execute all Hough transforms with origins in each of the Macro cells in parallel (typically -> O(100))

macro cell size typically 10 x 10 cm²

How to Trigger on Feebly Interacting Neutral Particles

Tracks may have arbitrary directions in the CDC

tracks with large crossing angles through the wire planes

-> will not fire present Track Segments (TS)

FPGA: calculate O(100) Hough planes from new TS (parallel in 4 qudrants -> still marginal ("sportlich"!)

Selection of "Hot" Candidates: B/W Hough Map

FPGA implementation:

- Black&White Hough maps
- Calculate for each map

$$r = \left(N_{high} + N_{low}\right) / N_{in}$$

- retain the 5 largest
- build the 5 "colored" maps
- select most probable map
 via single hidden layer net

L1 Trigger Pipeline (upgraded version)

- UT4 Hardware for 3DHDNN already existing (4 units)
- Hardware implementation of DVT: add new TS to present Track Segment Finder Unit (UT4)
 + new DVT Units (UT4), 4 quadrants

= UT4 VME modules, equipped with Xilinx Ultracale 7 XCVU080/160/190 FPGAs

Schedule & Milestones

Summary: L1 Neural Track Triggers for Run 2

- Minimum Bias Single Track Trigger (STT) as global trigger
 - excellent performance even under present severe background conditions
 - But: "Feed-down" and "Fakes" need attention with rising luminosity (& bg)
- Upgrade: More powerful FPGA boards now available (Virtex UltraScale 7 XCVU160)
 - track finding via optimized 3D Hough cluster algorithm (novel method!)
 - additional inputs from all wires within the TSs (126 inputs total) (ADC cut for CDC wire signals to suppress background)
 - deep-learning neural network architectures (4 x 60 hidden nodes)
 - commissioning by fall 2025, launch planned for the winter 2025 data taking
- Neural Displaced Vertex Trigger (DVT), aiming at long-lived new particles ("FIPs"), basic algorithm exists, HW implementation planned for early 2026
- Beyond Run2: KIT group -> track finding via GNNs at hit level (offline very successful!)
 - -> data from CDC & new silicon VTX -> need new trigger hardware -> UT5 (FPGA++)

Backup

Example of the full 3D Hough Map (Particle Gun)

Stacked view for illustration only, cluster finding is done in 3D

Simon Hiesl (MPI & LMU)

Track Finding in 3 Hough Dimensions

- "Classical" cluster algorithm (DBSCAN) not suited for hardware implementation
- **New cluster (track) finding algorithm (**S. Hiesl)
 - fill cells in Hough space from all TS (use trained cell weights)
 - find maximum cell in Hough space (w(cell) > w_{min})
 - require associated TS from $\geq n$ axial and $\geq m$ stereo different superlayers (n = 4, m = 3)
 - store associated track segments within fixed cluster shape
 - select unique TS in each superlayer (maximum cell weight / shortest DT)
 - determine $< \phi >$, < pt >, $< \theta >$
 - clear all Hough cells around maximum cell (-> butterfly cut)
 - iterate *k* times (*k* typically 2 in each quadrant)
- -> find typically up to 8 tracks per clock cycle (maximal drift time ~ 16 clock cycles)

Simon Hiesl (MPI & LMU)

Cleanup of CDC Hits

Real data: Dominating background in the CDC from synchrotron radiation & electronic cross talk -> typically small charge depositions on the wires

typical cut to remove "noise": ADC < 10 counts

Effect of ADC cut on the Hough map

 ϕ -bin

Weighted Hough Cells

Improved algorithm for hit curves:

- Standard method in binned Hough space: equal weight for each hit cell.
- Distributions of distance of track to cell center ("drifttime") are trained and stored in LUTs
- weight encoded in 3-bits: $w_{\omega\phi\theta}$ (bins close to real track receive higher weights)
- provides better accuracy for the crossing location in the binned Hough space

 ϕ -bin

weight distributions of cells depend on the granularity of the Hough grid

(highest granularity in azimuth ϕ)

ω: 40, φ: 384(160), θ: 9

Reminder: Calculation of Network Inputs

the 3D Hough method supplies:

- phi (φ_0) in quadrant
- $\pm \omega$ (charge curvature = $1/R_{track}$)
- θ (polar scattering angle)
- from TSF: wire# and DT and
 R/L index [1,2,3] for prio wire,
 DT for other wires [ADC > cut]

For the standard network input we need to calculate

- α (see formula)
- ±ΔDT_i = (DT_i DT(min)) (self timing from all DTs in track) sign from R/L
- phi_rel in the full 2π plane

phi_rel = phi(wire) – phi_cross

Expected Performance of Upgrade

Expected Performance of Upgrade

Simulation of new track model (3D Hough) followed by a DNN for precision (4 hidden layers, 60 nodes each)

For comparison: traditional 2D track model + DNN (by Yuxin Liu)

3DHough + DNN:

- superior resolution at IP
- natural suppression of track candidates for large |z|
- -> robust against large background

Simon Hiesl MPI/LMU
Timo Forsthofer MPI/LMU