Irradiation Test of Opt. Transceivers for CDCFE \rightarrow TRG

<u>Hanwook Bae</u> and Yu Nakazawa KEK, Institute of Particle and Nuclear Studies (IPNS)

Current CDCFE and Triggers

- Currently, CDCTRG receives the hit information from the front-end electronics
 - The merger boards receive the data firstly and simplify signals
 - Then, the TSF modules get the simplified information and find the track segments for further CDCTRG processes.
- The front-end boards send the signal through the MPO cables with 3.2 Gbps speed.
 - The optical module in the front-end side survives for the 300 Gy dose (The **manufacture** for the modules is **terminated** *for* No spares!)
- The CDC team planned upgrading the front-end boards

Irradiation Tests for CDCTRG Optical Transceivers | Hanwook BAE

ASD

ADC

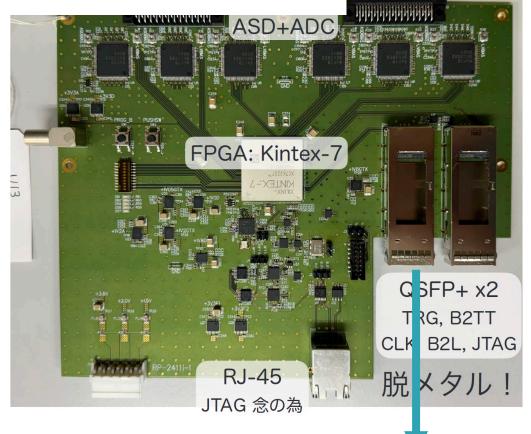
CDCTRG (TSF)

Current CDCFE board

FPGA: Virtex-5 SFP Opt. link socket RJ-45 x2 JTAG B2T1 CDC Merger From Nakazawa-

san's slides: Link

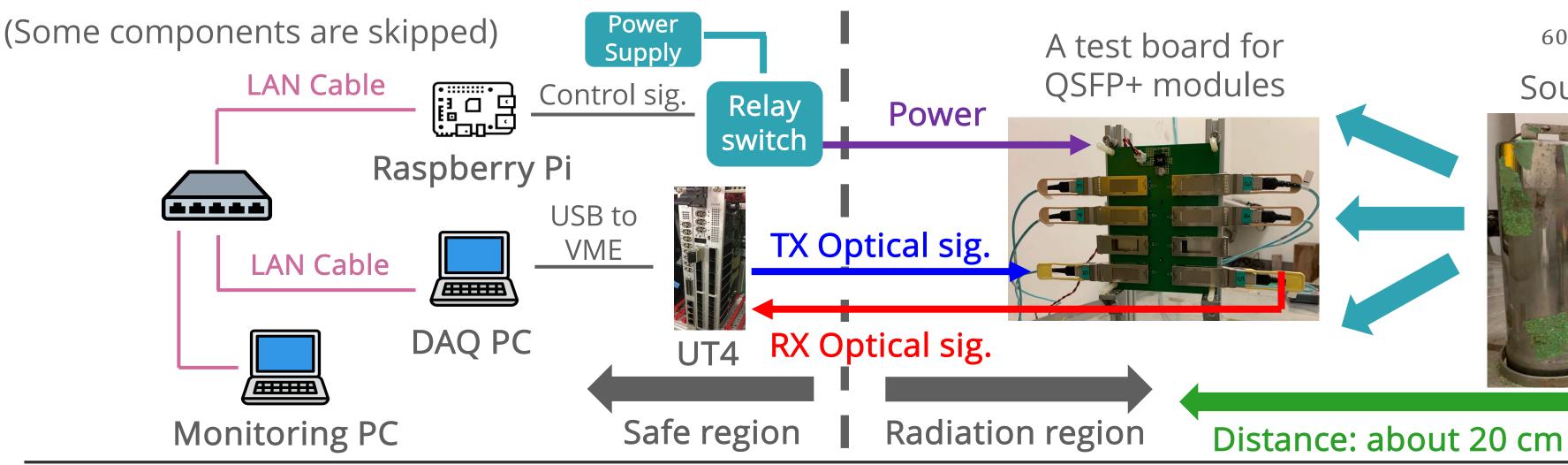
Upgrade of CDCFE


- The new CDC front-end board has upgraded FPGAs and optical transceiver
 - New optical transceiver: Replaceable QSFP+ modules with 40 Gbps
 - Easy replacement and more detailed information to CDCTRG
- With the new boards, the TSF module will receive the full CDC information without merger boards
 - e.g., ADC information for all the wires in the track segments
- We tested the resistance of the various QSFP+ modules in the market against the gamma and neutron rays
 - Requirements: It should survive for <u>1000 Gy dose</u> of gamma and <u>10¹² 1MeV-equivalent</u> thermal neutrons (This requirement corresponds to <u>the dose for 10 years</u> at the Belle II radiation condition)

Irradiation Tests for CDCTRG Optical Transceivers | Hanwook BAE

nd optical transceiver <mark>O Gbps</mark>

S New CDCFE board



From Nakazawasan's slides: <u>Link</u>

CDCTRG (TSF)

Gamma Irradiation Test: Configuration

- We performed the irradiation test with gamma rays at the facility of Science Tokyo Univ.
 - ⁶⁰Co in the source emits the 1.17 and 1.33 MeV gamma-rays. Dose rate: 100-200 Gy / hour
 - We check the stability of optical links with a loopback configuration through the test board.
 - Optical modules on the test board are power-cycled per every 100 Gy doses

2024 Nov. 20th-22nd by Y. Nakazawa and H. Bae

Gamma Irradiation Test: Results by Models

- We tested various models for the modules. Two modules meet our requirements
 - Considering the selling agencies, we selected the Dell-compatible model from FS.com

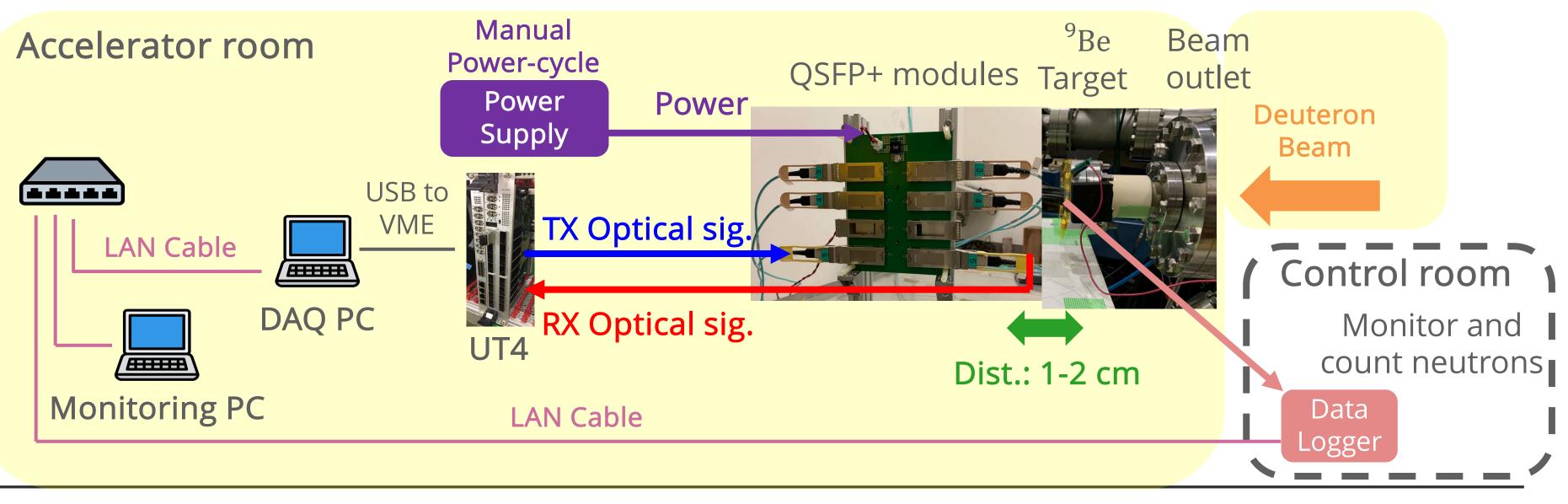
0.00								
Model & Manufacture	S	Resistance						
	#1	#2	#3	#4	#5	at least		
FiberJapan 8515	500 (PC)	650	1400 (PC)	1300 (PC)	1500 (PC)	> 400 Gy		
FiberJapan 85-015	1400 (PC)	1300 (PC)	1100 (PC)	1256 (PC)	1200 (PC)	> 1000 Gy		
FS.com FS compatible QSFP-SR4-40G	500 (PC)	400 (PC)	500 (PC)	400 (PC)	400 (PC)	> 300 Gy		
FS.com Dell compatible QSFP-SR4-40G	1300 (PC)	1400 (PC)	1300 (PC)	1200 (PC)	1200 (PC)	> 1100 Gy		
FS.com Cisco compatible QSFP-SR4-40G	1000 (PC)	1190 Survived	Not tested			> 900 Gy		
FS.com Avago compatible QSFP-SR4-40G互換	1000 (PC)	1156 Survived	1300 (PC)	1200 (PC)	1300 (PC)	> 900 Gy		
 Color of figures indicates the dose rate (100 Gy/h and 200 Gy/h) (PC) means the corresponding sample dead after the power-cycle In the (PC) case, we consider the dose in the previous successful power-cycle as the final resistance as a conservative approach 								

cycle as the final resistance as a conservative approach

2025 Feb. 10th-12nd by Y. Nakazawa and H. Bae

Gamma Irradiation Test: Results per Lot-Numbers

- We performed another test to check the dependency of the lot numbers. • The module model is "Dell compatible QSFP-SR4-40G" from FS.com
- Three module pairs from two different lot number has been tested
 - Dose rate and total dose: 40 Gy/hour for 32 hours: 1280 Gy
- Result: No significant variations and all pairs from the both lot numbers can meet our requirements.
 - Some pairs showed unstable link status during the test, but after power-cycling at the end of test, all modules established the stable link!


Lot. No. of Dell-compatible	Sample pai	Resistance		
QSFP-SR4-40G modules	#1	#2	#3	at least
CG2409245468	> 1280 Gy	1200 Gy	1200 Gy	1200 Gy
CG2408268338	1200 Gy	1100 Gy	1200 Gy	1100 Gy

Neutron Irradiation Test: Configuration

- We performed the irradiation test at the TANDEM accelerator of Kobe University.
 - It shoots 3-MeV deuterons to ⁹Be targets, which makes 2-MeV neutrons through ⁹Be $(d,n)^{10}$ Be
 - We measured the number of neutrons with probes at the 9 Be target (Total dose: 10^{12} neutrons)

2025 Jan. 6th-13nd by Y. Nakazawa and H. Bae

Neutron Irradiation Test: Results

- As we considered the optical transceiver is not affected much by the neutrons, we tested two pairs of the optical transceiver
 - The module model is "Dell compatible QSFP-SR4-40G" from FS.com
- We irradiated 10¹² neutrons to the module, and there were **no optical link instability** during the test.
 - The module was normal after the irradiation test.
- The both modules **meet our requirements** for the resistance against the neutron rays

Summary

- We performed irradiation tests for the optical modules with the gamma and neutronrays, which will be used between the CDCFE and CDCTRG link for the new CDCFE.
- Gamma ray test:
 - 1st test to confirm what model we will use: "Dell compatible QSFP-SR4-40G" from FS.com is good.
 - 2nd test to check the lot-number dependency: There may be dependency, but not large and all lots we tested meet our requirements. (We will buy the tested lots)
- Neutron ray test to confirm the neutron-ray-resistance of the selected module
 - The module meets our requirements for the neutron rays.
- We successfully selected the model for the optical modules, which can endure the Belle II radiation conditions for 10 years.

Backup Slides