

SuperKEKB beam loss simulations in Xsuite

G. Broggi ^{1,2,3}, R. Bruce ², G. Iadarola ², S. Redaelli ², J. Salvesen ², F. Van der Veken ²

¹ Sapienza University of Rome, Italy ² CERN, Meyrin, Switzerland

³ INFN-LNF, Frascati, Italy

With essential inputs and support from:

A. Abramov, M. Boscolo, A. Natochii, T. Ishibashi, S. Terui, F. Zimmermann

BELLE-II beam background meeting, 29/01/2025

About me

- Giacomo Broggi (email: giacomo.broggi@cern.ch)
 - Doctoral Student at CERN
 - Supervisor: Dr. Roderik Bruce (CERN)
 - PhD candidate in Accelerator Physics at Sapienza University of Rome
 - Advisor: Dr. Manuela Boscolo (Sapienza University of Rome and INFN-LNF)

Research focus

- Future Circular electron-positron Collider (FCC-ee) collimation system design
- Development of simulation tools for collimation of lepton beams
 - Benchmark with measured data at operating lepton colliders (SuperKEKB, DAφNE)
- 1 month exchange at KEK (Jan-Feb 2024) in the frame of the EAJADE exchange programme
 - KEK supervisor: Assoc. Prof. T. Ishibashi
 - Participation in experimental activities: NLC system commissioning, background studies, ...
 - Fruitful collaboration with KEK/BELLE-II colleagues to set up an Xsuite-based collimation simulation model of SuperKEKB (many thanks to A. Natochii for essential inputs and support!)

In this talk

- Beam loss simulations in Xsuite
- Setup of Xsuite-based collimation simulations with Xsuite model of SuperKEKB
- First SuperKEKB test simulations

 Beam-gas loss distributions in the SuperKEKB LER

<u>NOTE</u>: The simulation results presented in this talk are not yet intended to provide quantitative conclusions. Instead, they are meant to demonstrate the capabilities of the Xsuite tool applied to SuperKEKB.

- Beam losses and collimation simulations in Xsuite
- Simulation tool benchmark: SuperKEKB is an ideal candidate
- SuperKEKB aperture and collimator models
- Beam loss simulations
 - Touschek scattering simulations
 - Beam-gas scattering simulations
- First demonstrative SuperKEKB simulations with Xsuite
 - SuperKEKB beam-gas losses
- Outlook and next steps

- Beam losses and collimation simulations in Xsuite
- Simulation tool benchmark: SuperKEKB is an ideal candidate
- SuperKEKB aperture and collimator models
- Beam loss simulations
 - Touschek scattering simulations
 - Beam-gas scattering simulations
- First demonstrative SuperKEKB simulations with Xsuite
 - SuperKEKB beam-gas losses
- Outlook and next steps

Beam losses and collimation simulations in Xsuite

- Xsuite overview (G. ladarola ICAP'24 talk, HB'23 paper)
 - Key modules: Xobjects, Xdeps, Xpart, Xtrack, Xfields, Xcoll
 - Seamless integration with accelerator-specific and general-purpose Python tools
 - Enables study of complex simulation scenarios
- Xcoll module (F. Van der Veken, ICAP'24 talk, HB'23 paper)
 - Dedicated module for collimation studies in particle accelerators
 - Integration of detailed aperture models with precise loss location identification
 - Integrates beam-matter interaction simulations in particle tracking with various scattering models (Everest-K2, FLUKA, Geant4/BDSIM)
- Xsuite-BDSIM/Geant4 coupling (A. Abramov, <u>JINST paper</u>)
 - Originally developed for the FCC-ee collimation simulation needs
 - Deployed in full production for FCC-ee collimation studies

m] s

Xsuite

-0.0

4_0.01

0.02

G. Broggi | SuperKEKB beam loss simulations in Xsuite

-0.02

0.00

suite

Simulation tool benchmark (1/2)

- Xsuite-BDSIM is used to quantify collimation performance in the FCC-ee
 - Important to benchmark simulations with measured data
- Xsuite-BDSIM coupling already benchmarked against:
 - **Existing tools**: MAD-X, PyAT-BDSIM, Sixtrack-FLUKA, Sixtrack-K2
 - Measured data from proton machines: PS, LHC

Betatron collimation losses in the LHC (IR7): measured (left) and simulated (right). From G. Broggi, master's thesis.

- For the FCC-ee needs this is **not fully satisfactory** (different particle type and energy)
 - Benchmark with data from a lepton machine is needed
 - SuperKEKB is an excellent candidate (DAΦNE is also being considered)

Simulation tool benchmark (2/2)

- An additional benchmarked simulation tool could also be of interest for SuperKEKB/BELLE-II
 - > Could help in a better understanding of beam losses and overall machine performance
 - ➢ In general, good to have cross-checked simulation tools
- Ingredients for a successful benchmark:

Xsuite-compatible SuperKEKB optics model *****

- Significant progress over the last ~6 months
- Detailed checks ongoing

SuperKEKB aperture model

 Available in SAD model / BELLE-II Analysis Software Framework repository

SuperKEKB collimator data (geometry, opening, material)

• Provided by A. Natochii (many thanks!)

Capability to simulate background sources

(beam-gas, Touschek, luminosity, ...)

J. Salvesen, previous talk

Measured data to compare simulations with

Relative total dose rate for diamond detectors in the IR vs. D06V1 collimator aperture in units of $\sigma\beta V$

- Beam losses and collimation simulations in Xsuite
- Simulation tool benchmark: SuperKEKB is an ideal candidate
- SuperKEKB aperture and collimator models
- Beam loss simulations
 - Touschek scattering simulations
 - Beam-gas scattering simulations
- First demonstrative SuperKEKB simulations with Xsuite
 - SuperKEKB beam-gas losses
- Outlook and next steps

SuperKEKB aperture model in Xsuite

- A first SuperKEKB (LER) aperture model has been included in the SuperKEKB Xsuite lattice
 - IP aperture (5mm radius)
 - Final focus quadrupoles apertures from SAD
 - Information available for the quadrupole center (C) and exit (O) only!
 - Current assumption: aperture at the entry is the same as in the center
 - IR beam pipe aperture (40 mm radius)
 - Beam pipe aperture elsewhere (45 mm radius)
 - Collimator apertures: set according to the scenario
 - Collimator geometry:

PERT	AQC1LC	=(AX =.01 AY =.0135 DY =.0015)
	AQC1LO	=(AX =.013 AY =.0135 DY =.0015)
	AQC2LC	=(AX =.035 AY =.035 DY =.0015)
	AQC2LO	=(AX =.035 AY =.035 DY =.0015)
	AQC2RO	=(AX =.035 AY =.035 DY =.001)
	AQC2RC	=(AX =.035 AY =.035 DY =.001)
	AQC1RO	=(AX =.013 AY =.0135 DY =.001)
	AQC1RC	=(AX =.01 AY =.0135 DY =.001)

Only the collimator tip is presently modelled: this is most likely oversimplified for the SuperKEKB simulation needs!

29/01/2025

G. Broggi | SuperKEKB beam loss simulations in Xsuite

SuperKEKB IR aperture model

- BELLE-II aperture model also available (BELLE-II analysis software repository)
 - Looks more detailed than SAD model
 - Should be implemented instead of the SAD model ?
 - Any recommendations ?

- Beam losses and collimation simulations in Xsuite
- Simulation tool benchmark: SuperKEKB is an ideal candidate
- SuperKEKB aperture and collimator models
- Beam loss simulations
 - Touschek scattering simulations
 - Beam-gas scattering simulations
- First demonstrative SuperKEKB simulations with Xsuite
 - SuperKEKB beam-gas losses
- Outlook and next steps

Beam loss simulations

- Different beam loss processes can be studied with Xsuite-based simulations:
 - Generic beam halo losses
 - Betatron losses, off-momentum losses, or combinations of the two

Slow losses on the collimation system

- Beam losses from beam-beam interactions (radiative Bhabha, beamstrahlung, beam-beam kicks)
 - Beam-beam models available in Xsuite (P. Kicsiny, PhD thesis)
 - $\circ~$ Integrated beam-beam and collimation simulations already performed for:
 - o FCC-ee (G. Broggi, <u>BB'24 talk</u>), LHC (F. Van der Veken, <u>BB'24 talk</u>)
- With inputs to set up suitable models: losses due to fast instabilities, injection losses, failure scenarios, ...
 - Fast instability losses being studied for the FCC-ee (G. Nigrelli, <u>talk</u>)

Touschek scattering simulations (1/2)

- A Monte Carlo routine to simulate Touschek scattering has been under active development in the last month
 The routine follows the approach by A. Xiao and M. Borland (<u>PRSTAB paper</u>) implemented in <u>ELEGANT</u>
- An arbitrary number of Touschek scattering centers are placed along the lattice
 - At each Touschek scattering center, a Touschek scattered distribution is generated
 - To each simulated scattered particle is assigned a total scattering rate Ri

$$R_i = \frac{r_i}{\sum r_i} \frac{R_{\rm MC}}{R_{\rm P}} \int R_{\rm P},$$

ri: local scattering rate of the i-th particle R_{MC} : local Touschek scattering rate from Monte Carlo R_{P} : local Touschek scattering rate from Piwinski formula

$$R_{\rm MC}(|\delta| > \delta_m) = \frac{V}{N} \sum_{i=1}^{M} \left[\frac{v^{*'}}{\gamma^2} \frac{d\sigma^{*'}}{d\Omega^{*'}} \sin \Theta^{*'} \rho(\vec{x}_1) \rho(\vec{x}_2) \right]_i = \sum_{i=1}^{M} r_i,$$

V: phase-space volume *N*: n. of simulated scattering events *M*: n. of scattering events resulting in δ > δ min v^* : velocity in the c.o.m frame after scatt. Θ^* : scatt. angle in the c.o.m. frame ρ : phase-space density

$$\frac{d\sigma^*}{d\Omega^*}(\Theta^*, \Psi^*) = \frac{r_e^2}{4\gamma^{*2}} \left[\left(1 + \frac{1}{\beta^{*2}} \right)^2 \frac{4 - 3\sin^2\Theta^*}{\sin^4\Theta^*} + \frac{4}{\sin^2\Theta^*} + 1 \right],$$

Møller DCS

- For a Gaussian-distributed bunch $R_{MC}/R_P \approx 1$
- The integral of R_P is taken over each section upstream of each Touschek scattering center, starting from the
 previous scattering center: the simulated scattered particles accurately represent the scattering rate from
 the entire upstream section

Touschek scattering simulations (2/2)

- The beam-loss rate and location can then be calculated tracking with Xsuite the Touschek-scattered particles through the lattice and recording all lost particles
 - > The total loss rate will be the sum of Ri for all the particles lost at any location.

- Good agreement between simulated (MC) and Piwinski Touschek scattering rate for a Gaussian-distributed beam
- Full simulations with tracking Touschek scattered particles yet to be performed

Beam-gas simulations (1/3)

- A scattering routine to simulate beam-gas interactions while tracking in Xsuite has been recently developed
- **Physics models** (DCS: Differential Cross Section):

Bremsstrahlung

- Z<5: DCS in complete screening with radiation logarithms computed using the Dirac-Fock model of the atom (Thomas-Fermi model not accurate at low Z)
- Z>5: DCS with Tsai analytical screening functions
- Coulomb correction
- NO LPM

Coulomb scattering

- Wentzel-Mott DCS
 - Rutherford DCS + Wenztel corr. + Mott corr.
 - Wenztel: screening of the nuclear charge by atomic electrons
 - Mott: magnetic moment interaction between e+/e- and target nucleus

Beam-gas simulations (2/3)

- An arbitrary number of **beam-gas elements** (Xsuite custom elements) are placed along the lattice
 - Each beam-gas element embed information about the local gas parameters (pressure, composition, ...) taken from a measured (or simulated) pressure profile
 - At each **beam-gas element** the mean free path is computed from cross sections and local gas densities
 - When tracking in Xsuite, a random number is generated for each particle to represent the distance travelled by that particle in units of mean free paths (mfp): $n_{\lambda} = -\log(random(0,1))$
 - The number n_{λ} is compared with mfp step $n_{\lambda, ij} = \frac{\Delta s_{ij}}{\lambda_{tot_i}}$ between two consecutive beam-gas elements:
 - $n_{\lambda} n_{\lambda, ij} \leq 0$: interaction \rightarrow a new n_{λ} is sampled for further tracking
 - $n_{\lambda} n_{\lambda, ij} > 0$: **NO interaction** $\rightarrow n_{\lambda}$ is updated as $n'_{\lambda} = n_{\lambda} n_{\lambda, ij}$ for further tracking

Beam-gas simulations (3/3)

- When the interaction condition is satisfied, which interaction (eBrem or CoulombScat) and with which gas species is decided by sampling among all the possibilities with probabilities given by the cross-sections and the local gas densities
- Once an interaction is selected, the **effect of the interaction** is applied to the interacting particle:

px → px + Δpx, py → py + Δpy, δ → δ₀ + δ

- Cross section biasing is necessary to perform simulations with reasonable computing time
 - Biasing choice: cross sections are scaled up such that $\lambda mfp = 1$ turn
 - \succ (1 1/e) \cong 63.2% simulated particles interact on the first turn
 - <u>Constraint</u>: a simulated particles cannot interact twice

Disclaimer on Touschek and beam-gas routines

- At the moment, the Touschek and beam-gas scattering routines are not part of the Xsuite framework
 - They are presently custom routines that have been developed in the context of collimation tracking in Xsuite with a focus on the FCC-ee/SuperKEKB/DAΦNE simulation needs
 - In the longer term, upon generalization, testing, and agreement with the lead developers, they will embedded in Xsuite (Xfields/Xcoll modules)

- Beam losses and collimation simulations in Xsuite
- Simulation tool benchmark: SuperKEKB is an ideal candidate
- SuperKEKB aperture and collimator models
- Beam loss simulations
 - Touschek scattering simulations
 - Beam-gas scattering simulations
- First demonstrative SuperKEKB simulations with Xsuite
 - SuperKEKB beam-gas losses
- Outlook and next steps

SuperKEKB beam-gas losses

- First SuperKEKB <u>test simulations</u> have been set up
 - SuperKEKB LER 2020 lattice ($\beta x^* = 60 \text{ mm}, \beta y^* = 0.8 \text{ mm}, CW$)
 - IR solenoid not yet included
 - NO X-Y coupling (i.e., NO vertical offset of sextupoles added)
 - Initial conditions: $\epsilon x=2.1$ nm, $\epsilon y=2.1$ pm, $\sigma z=5$ mm
 - Aperture model from SAD
 - Collimator settings from 27/06/2020 background study

 D06V1 at ~60sigma
 - Simplified collimator geometries modelled in BDSIM/Geant4
 - Extrapolated pressure profile at I = 0.477 A
 - Z=7 equivalent gas (from KEKB/SuperKEKB experience)
 - 1429 equispaced (~2 m spacing) beam-gas elements to model beam-gas interactions (eBrem or CoulombScat)
 - 1x10⁶ particles tracked 1 turn with biased beam-gas interactions ON + 999 turns with interactions OFF
 - SR emission ON (damping + quantum excitations)

29/01/2025

G. Broggi | SuperKEKB beam loss simulations in Xsuite

Configuration from 27/06/2020 background study <u>A. Natochii et al., PRAB paper</u>

LER INJ	DIF_POS [mm]	beta_x [m]	nu_x	eta_x [m]	Nsigma (BSC)	Nsigma (beta)	Nsigma (eta)	LM	
D06H1OUT	10.49	24.2	25.01	0.7	18.2	46.4	19.8	0.02	
D06H1IN	-10.53	24.2	25.01	0.7	18.3	46.6 20.0		0.02	
D06H3OUT	10.79	24.2	26.23	0.7	18.8	47.8	20.5	0.00	
D06H3IN	-10.82	24.2	26.23	0.7	18.9	47.9	20.5	0.00	
D03H1OUT	10.89	29.0	38.44	0.8	17.2	44.2	18.7	0.03	
D03H1IN	-11.11	29.0	38.44	0.8	17.6	45.0	19.1	0.00	
D02H1OUT	7.97	22.6	42.26	0.2	29.7	36.5	51.2	0.00	4=Abo
D02H1IN	-8.06	22.6	42.26	0.2	30.1	37.0	51.8	0.00	>3.00
D02H2OUT	10.48	39.2	42.74	0.6	19.1	36.4	22.5	0.00	>1.50
D02H2IN	-10.46	39.2	42.74	0.6	19.3	36.7	22.7	0.00	
D02H3OUT	12.41	40.9	43.46	-0.9	16.9	42.3	18.4	0.01	
D02H3IN	-12.58	40.9	43.46	-0.9	17.1	43.0	18.7	0.01	
D02H4OUT	8.06	26.4	44.24	-0.4	19.6	34.2	24.0	0.00	
D02H4IN	-8.02	26.4	44.24	-0.4	19.5	34.1	23.9	0.00	
QC1(1.18m)	10.5	41.7	44.28			35.5			
					1	Dia QCSFV	v		
\square	DIF_POS [mm]	beta_y [m]	nu_y	Nsigma (beta)	LM b	eta_y*[mm 0.8] beta_x* 60.0	[mm]	
D06V1TOP	2.25	67.3	28.86	59.4	1.61			-	
D06V1BTM	-2.20	67.3	28.86	58.8	1.01	20200623_0 x60CW8	.8x60CW40_ 30_sler_202	_0.8	
DOGVOTOD	1.02	00.6	20.50	00.0	0.00	1			
DOGV2TOP	1.93	20.0	30.50	92.9	0.02				
DUOVZDIW	0.23	20.6	30.50	90.1	0.02	emit_x [nn	n] 2.10	_	
D02V1TOP	1.55	18.4	44.87	78.9		emit_y [nn	n] 0.021		
D02V1BTM	-1.50	18.4	44.87	76.1	0.03	emit v [nm]			
	0.15					by XRM	0.053)	
QC1	13.5	977.8	46.34	94.2	-	Sigmay by XRM [um]	60.6	_	
(1.12m)				Dia QCSF	w	current [m	A1 477	_	

SuperKEKB beam-gas losses: Coulomb scattering

- Simulation output returns a record of all simulated particles, including information like:
 - Particle type, 6D coordinates (x, px, y, py, zeta, δ)
 - State (alive, lost on aperture, lost on collimator, ...), loss location (s-coordinate), lost at turn #, ...
- Extrapolated pressure profile Distribution of lost particles can be presented in loss maps: ٠ @ 477 mA used in simulation Tsukuba Nikko Fuji Oho Tsukuba 0.75 P_{ext} @ 477 mA [Jugu] 0. d 0.25 DogHI D06H3 D061/1 10^{2} Collimator 10^{1} Cold loss,∆s Warm 100 $\begin{bmatrix} 10^{-1} \\ -10^{-1} \\ -10^{-1} \\ -10^{-3} \end{bmatrix}$ 10^{-4} 10^{-5} 10^{-6} 500 1000 1500 2000 2500 3000 s [m]

29/01/2025

G. Broggi | SuperKEKB beam loss simulations in Xsuite

SuperKEKB beam-gas losses: bremsstrahlung

- Simulation output returns a record of all simulated particles, including information like:
 - Particle type, 6D coordinates (x, px, y, py, zeta, δ)
 - State (alive, lost on aperture, lost on collimator, ...), loss location (s-coordinate), lost at turn #, ...
- Extrapolated pressure profile Distribution of lost particles can be presented in loss maps: • @ 477 mA used in simulation Tsukuba Nikko Fuji Oho Tsukuba 0.75 P_{ext} @ 477 mA [Jugu] 0. d 0.25 Doolill D06H3 D06V1 10^{2} Collimator 10^{1} [∟]loss.∆s 10° 10^{-1} η [m⁻¹] 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 500 1500 2000 1000 2500 3000 s [m]

G. Broggi | SuperKEKB beam loss simulations in Xsuite

Additional output from simulations

- Simulation output also returns:
 - Impact table: table containing a record of the particle impacts on each collimator
 - Very useful to retrieve impacting distributions on each collimator (<u>example on next slide</u>)

turn	collimator	interaction_type	id_before	s_before	x_before	px_before	y_before	py_before	zeta_before	delta_before	energy_before	mass_before	charge_before
0	pmd06v2	Enter Jaw R	121	0.0	2.758376e-03	0.000762	-0.001984	0.000310	0.002288	-0.000844	3.996622e+09	510998.9375	1
0	pmd06v2	Enter Jaw R	329	0.0	4.988879e-04	0.000327	-0.000792	0.000133	-0.006344	-0.000236	3.999054e+09	510998.9375	1
0	pmd06v2	Enter Jaw R	352	0.0	1.537153e-03	0.000326	0.000775	-0.000181	-0.001554	-0.000552	3.997790e+09	510998.9375	1
0	pmd06v2	Enter Jaw L	455	0.0	8.516428e-04	0.000366	-0.000050	0.000032	0.002967	-0.000385	3.998460e+09	510998.9375	1
0	pmd06v2	Enter Jaw L	725	0.0	5.278703e-03	0.001025	0.000594	-0.000064	0.003924	-0.000114	3.999544e+09	510998.9375	1

• Beam-gas log: table containing the history of the beam-gas interactions that took place in the simulation

name	S	particle_id	interaction
beam_gas_0	0.000000	[1099, 1132, 2400, 2445, 4601, 5503, 6598, 826	[N_eBrem, N_eBrem, N_eBrem, N_eBrem, N_eBrem,
beam_gas_1	2.111415	[338, 1663, 3373, 3374, 3813, 4415, 5826, 7581	[N_eBrem, N_eBrem, N_eBrem, N_eBrem, N_eBrem,
beam_gas_2	4.222829	[3743, 4303, 4912, 5554, 6659, 7280, 7600, 764	[N_eBrem, N_eBrem, N_eBrem, N_eBrem, N_eBrem,
beam_gas_3	6.334244	[2423, 4111, 4971, 6001, 9161, 9326]	[N_eBrem, N_eBrem, N_eBrem, N_eBrem, N_eBrem,
beam_gas_4	8.445658	[1531, 3174, 4181, 4480, 5120, 5642, 6110, 622	[N_eBrem, N_eBrem, N_eBrem, N_eBrem, N_eBrem,

SuperKEKB beam-gas losses: impacts on D06V1

• <u>Example</u>: distribution impacting D06V1 collimator because of Coulomb scattering interactions

• Collimator impacts show that the presently assumed collimator geometry is too simplified!

- Beam losses and collimation simulations in Xsuite
- Simulation tool benchmark: SuperKEKB is an ideal candidate
- SuperKEKB aperture and collimator models
- Beam loss simulations
 - Touschek scattering simulations
 - Beam-gas scattering simulations
- First demonstrative SuperKEKB simulations with Xsuite
 - SuperKEKB beam-gas losses
- Outlook and next steps

Outlook

- Ongoing effort to perform SuperKEKB beam loss simulations with Xsuite
 - <u>GOAL</u>: benchmark Xsuite-BDSIM with SuperKEKB background studies (27th June 2020 <u>PRAB paper</u>)
 - Xsuite could be of interest for SuperKEKB/BELLE-II
 - Integrated scattering engines (Geant4/BDSIM, FLUKA)
 - Online processing of detailed aperture models with precise identification of lost particle locations
 - We are happy to contribute to SuperKEKB/BELLE-II collimation and background studies!
 - A lot of progress in the latest months:
 - Optics model development (many thanks to J. Salvesen, G. ladarola, KEK colleagues !!)
 - First simplified SuperKEKB aperture and collimator models
 - Development of beam-gas and Touschek scattering routines
 - First test simulations successfully ran: while still purely demonstrative, show the possibility of simulating collimation in SuperKEKB with Xsuite!

Next steps

- Include full IR (with solenoid) in the model: this is already possibile! (J. Salvesen, previous talk)
- Refine the aperture and collimator geometry models
- Beam loss simulations with the recently developed Touschek scattering routine
- Perform <u>qualitative</u> (first) and <u>quantitative</u> (i.e., tracking IR losses in the BELLE-II detector) collimator scans
- Upcoming publication (IPAC'25):

COMPARISON OF XSUITE SIMULATIONS WITH MEASURED BACKGROUNDS AT SUPERKEKB

G. Broggi^{1,2,3*}, A. Abramov², M. Boscolo³, R. Bruce², G. Iadarola², T. Ishibashi⁴ A. Natochii⁵, S. Redaelli², J. Salvesen², S. Terui⁴, F. Van der Veken² ¹Sapienza University of Rome, Italy ²CERN, Meyrin, Switzerland ³INFN-LNF, Frascati, Italy ⁴KEK, Tsukuba, Ibaraki, Japan ⁵Brookhaven National Laboratory, Upton, NY, USA

> Goal is to present a benchmark of Xsuite simulations with 27th June 2020 background study (PRAB paper)

Any support from your side is much welcome!

29/01/2025

29/01/2025