Studying hadronization at Belle II

Cynthia Nunez on behalf of the Belle II collaboration POETIC XI February 24, 2025

Research supported by:

Office of Science

$\mathsf{Belle} \to \mathsf{Belle} \mathsf{II}$

Belle at KEKB (1999 - 2010) → Belle II at SuperKEKB (2019 - present)

- B factory at Tsukuba, Japan
- Asymmetric e^+e^- collider at collision

energies at or near $\Upsilon(4S)$

Image from: Phys. Rev. Accel. Beams 26, 013201 (2023)

$\mathsf{Belle} \to \mathsf{Belle} \amalg$

Belle at KEKB (1999 - 2010) → Belle II at SuperKEKB (2019 - present)

- B factory at Tsukuba, Japan
- Asymmetric e^+e^- collider at collision energies at or near $\Upsilon(4S)$
- Belle
 - Collected about $\int \mathcal{L}dt = 1000 \text{ fb}^{-1}$
- Belle II
 - Run 1 (2019-2022)
 - $\int \mathcal{L}dt = 424 \text{ fb}^{-1}$
 - Run 2 (2024-present)
 - In Dec. 2024, achieved luminosity of $5.1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Updated on 2025/01/06 16:16 JST

Belle II Detector @ SuperKEKB

• Large acceptance with good vertexing, PID, and tracking

KEK Report 2010-1 [arXiv:1011.0352]

KL and muon detector **EM calorimeter Outer barrel: Resistive Plate Counter** Energy resolution: 1.6-4% Endcap/inner barrel: scintillator Barrel: CsI(TI) + waveform sampling Endcap: waveform sampling **Particle identification** electrons (7 GeV) Barrel: Time-Of-Propagation counters (TOP) Forward: Aerogel RICH (ARICH) Kaon eff. 90% Mt. Tsukul Fake π rate 5% **Vertex detector** PXD: inner 2 layers pixel detectors, uperKEKB SVD: outer 4 layers strip sensors IP resolution: 15 μ m positrons (4 GeV) **Central drift chamber**

Spatial resolution 100 μ m dE/dx resolution 5% p_T resolution 0.4%

Hadronization at Belle II

 $\sigma^{lN \to lhX} = PDF \otimes \hat{\sigma} \otimes FF$

- Hadronization: how particular hadrons are formed from scattered quarks and gluons (partons)
- Fragmentation Functions (FF): probability distribution of a parton fragmenting into a specific hadron
- Transverse-momentum-dependent (TMD): spinmomentum correlations

Important processes in studying hadron formation

Progress in Particle and Nuclear Physics (2016) pp. 136-202

Image from arXiv:2304.03302v1

 $\sigma^{pp \to hX} = PDF \otimes PDF \otimes \hat{\sigma} \otimes FF$

Hadronization at Belle

Belle measurements sensitive to:

- **Collins FF**
- **Di-hadron FF**
- **Polarizing FF**

. . .

Phys. Rev. Lett. 96, 232002 (2006), Phys. Rev. D 78, 032011 (2008) [Phys.Rev.D 86, 039905 (2012] Transverse polarization asymmetries of charged pion pairs Phys. Rev. Lett. 107, 072004 (2011) Inclusive cross sections for pairs of identified light charged hadrons and for single Phys. Rev. D 92, 092007 (2015) Invariant-mass and fractional-energy dependence of inclusive production of di-hadrons Phys. Rev. D 96, 032005 (2017) Production cross sections of hyperons and charmed baryons Phys. Rev. D 97, 072005 (2018) Transverse $\Lambda/\overline{\Lambda}$ Hyperon Phys. Rev. Lett. 122, 042001 (2019) Transverse momentum dependent production cross sections of charged pions, kaons and protons Phys. Rev. D 99, 112006 (2019) Inclusive cross sections of single and pairs of identified light charged hadrons Recent measurement Phys. Rev. D 101, 092004 (2020)

Production cross section of light and charmed mesons

Azimuthal asymmetries in inclusive production of hadron

Belle preprint 2024-09, KEK Preprint 2024-30, submitted to PRD

Hadronization at Belle

 $x_p = p_h / p_{max}$

- R. Seidl, "Production cross sections of light and charmed mesons in e^+e^- annihilation near 10.58 GeV" Belle preprint 2024-09, KEK Preprint 2024-30, submitted to PRD
- Comprehensive study of production cross section of light and charmed mesons
- Improved ISR corrections for D-mesons, and detailed comparison with various MC tunes
- Important for future SIDIS measurements at the EIC

Charmed mesons

Hadronization at Belle II and for the EIC

- Belle II can offer high precision, comprehensive measurements essential for the EIC
 - Clean environment for detailed studies of hadronic final states
 - Multi-dimensional analyses of FFs, correlations, heavy flavor, and hadronization effects in jets
 - Essential for understanding transverse momentum of partons in measurements of PDFs and spin-structure of nucleon at the EIC

 $\sigma^{lN \to lhX} = PDF \otimes \hat{\sigma} \otimes FF$

See Snowmass whitepaper arXiv:2204.02280

+ . . .

Current ongoing analyses at Belle II

- 1. Di-hadron Fragmentation Functions
- 2. Λ Polarization
- 3. TMD Jet Functions

- $H_1^{\triangleleft}(z, M, P_h, \theta)$ FF describe fragmentation of polarized quark into pair of spin-0 hadrons
- Spin correlation between the qq pair results in correlating between the azimuthal angles of dihadron pairs produced
- Belle measured the azimuthal asymmetries for dihadrons measured as a function of z_h and m_h Phys. Rev. Lett. 107, 072004 (2011)

Ongoing analysis: Katherine Parham, Duke University

Thrust: $T = \max \frac{\Sigma_h \left| P_h^{CMS} \cdot \hat{T} \right|}{\Sigma_h \left| P_h^{CMS} \right|}$ Cuts on thrust provide clean $q\bar{q} \ (q \in u, d, s, c)$ event sample

Partial wave expansion

- More complex partial wave contribution to transverse polarization dependent DiFF
- Dependence on m, z, p_t, θ, ϕ
- Important to understanding production at the EIC
- Belle II statistics enable multidimensional analysis

JPS Conf.Proc. 37 (2022) 020109

 $\sin \theta_D$ decay moment for $\pi^+\pi^-$ pairs; Belle results (655 fb⁻¹)

- Kaon inclusive
 - Measurement with K^+K^- , $K^+\pi^-$, or π^+K^- pairs
 - Results of H[∢]₁ can be used to describe strange quark distribution in the nucleon

• Jet axis

- Using jets axis instead of $q\bar{q}$ thrust axis
- Results link FFs in e^+e^- to SIDIS

New measurement important for upcoming experiments at JLab and the EIC

Jets: collimated spray of particles originating from partons in collision

Jet

Axes

12

Ongoing analysis: Katherine Parham, Duke University

Transverse Λ Polarization at Belle $z_h = 2E_h/\sqrt{s}$

• $\Lambda \rightarrow p\pi^-$ self analyzing decay

 $\frac{1}{N}\frac{dN}{d\cos\theta^*} = (1 + \alpha_{\Lambda}P\cos\theta^*)$

 α_{Λ} = 0.748 ± 0.007 (PDG 2023)

- Nonzero polarization observed for Λ and $\overline{\Lambda}$ as function of z and p_T
- Investigate feed-down contributions from Σ^0 and charm decays

Transverse Λ Polarization at Belle $z_h = 2E_h/\sqrt{s}$

• $\Lambda \rightarrow p\pi^-$ self analyzing decay

 $\frac{1}{N}\frac{dN}{d\cos\theta^*} = (1 + \alpha_{\Lambda}P\cos\theta^*)$

 α_{Λ} = 0.748 ± 0.007 (PDG 2023)

- Nonzero polarization observed for Λ and $\overline{\Lambda}$ as function of z and p_T
- Investigate feed-down contributions from Σ^0 and charm decays
- Polarization measurement also with respect to hadron in opposite hemisphere

Phys. Rev. Lett. 122, 042001 (2019)

Transverse Λ Polarization

- Belle measurement data accurate enough for phenomenological studies.
- Used for extractions of polarizing FF and Λ polarization predictions in $ep \rightarrow \Lambda X$; for example:

Transverse Λ Polarization

- Belle measurement data accurate enough for phenomenological studies.
- Used for extractions of polarizing FF and Λ polarization predictions in $ep \rightarrow \Lambda X$

Measurements at Belle II:

- Reduce uncertainties from feed-down and the prompt $\boldsymbol{\Lambda}$
- Λ polarization with respect to the plane spanned by beam axis and Λ momentum

Λ Spin Correlation

- Entanglement as a probe to hadronization
 - Spin correlation extracted from the correlation of relative spin projections
 - $N \propto 1 + \alpha^2 P_{\Lambda,\Lambda} \cos(n\theta_{ab})$
 - Get expected zero result in simulation

FIG. 3. Illustration of double Λ polarization; here $\hat{a}(\hat{b})$ denotes the momentum direction of $\Lambda_A(\Lambda_B)$ daughter particle in the $\Lambda_A(\Lambda_B)$ rest frame.

Phys. Rev. D 106, L031501 (2022) Phys. Rev. D 109, 116003 (2024)

TMD Jet Functions

Phys. Rev. Lett. 121, 162001 (2018) J. High Energ. Phys. 2019, 31 (2019)

• TMD FF \rightarrow TMD Jet Functions

- Use jets (instead of hadrons) in final state
 - Jet momentum is perturbatively calculable
 - Reduce uncertainty and improve sensitivity to PDFs in SIDIDS
- Measuring the jet q_T spectrum:

$$q=\frac{p_1}{z_1}+\frac{p_2}{z_2}$$

Require decorrelation to be small: $q_T \equiv |\mathbf{q}| \ll \frac{\sqrt{s}}{2}$

TMD Jet Functions – q_T Spectrum

Theoretical predictions for q_T predictions

JHEP10(2019)031 arXiv:2204.02280v2

• Sensitivity of the TMD to nonperturbative effects

Ongoing analysis: Simon Schneider, Duke University

• Statistical projections with Belle II simulation

TMD Jet Functions – T-odd side of jets

- T-odd jet components:
 - Recently found to survive due to non-perturbative effects
 - Important to access nucleon spin structure
- T-odd component can couple to the proton transversity at the EIC

Azimuthal asymmetry $R^{J_1 J_2} = 1 + \cos(2\phi_1) \frac{\sin^2 \theta}{1 + \cos^2 \theta} \frac{F_T(q_T)}{F_U(q_T)}$ $R = 2\int d \cos \theta \frac{d\phi_1}{\pi} \cos(2\phi_1) R^{J_1 J_2}$

Ongoing analysis: Simon Schneider, Duke University

Summary

- Belle II is currently collecting data during Run 2
- Belle and Belle II play an important role in understanding hadronization dynamics
- Provide key information on hadronization for future EIC measurements
- Lots of measurement opportunities at Belle II, with several current ongoing analyses underway

Thank You!

Thanks for help in preparing this presentation to S. Schneider, K. Parham, A. Vossen, and the Belle II collaboration!

Back up

Belle II Detector @ SuperKEKB

BELLE2-NOTE-PL-2020-024 BELLE2-CONF-PH-2022-003 BELLE2-NOTE-PL-2021-008 BELLE2-NOTE-PL-2020-031 BELLE2-CONF-PH-2021-002

Belle II event shape: thrust axis

- Using B-factory for hadronization studies
 - Events produced at or near $\Upsilon(4S)$ have different shapes
 - Cuts on thrust provide clean $q\bar{q}$ event sample

Azimuthal asymmetries for $e^+e^- \rightarrow (\pi^+\pi^-)(\pi^+\pi^-)$ Belle results (670 fb⁻¹)

Phys. Rev. Lett. 107, 072004 (2011)

Belle results – a recent review

Belle data provided essential measurements, including recent results:

R. Seidl et al., "Transverse momentum dependent production cross sections of charged pions, kaons and protons produced in inclusive e^+e^- annihilation" at \sqrt{s} =10.58 GeV

Belle results – a recent review

Belle data provided essential measurements, including recent results:

H. Li, A. Vossen, et al., "Azimuthal asymmetries of back-to-back $\pi^{\pm} - (\pi^0, \eta, \pi^{\pm})$ pairs in e^+e^- annihilation" Phys.Rev.D 100 9, 092008 (2019)

TMD Jet Functions – q_T Spectrum

Theoretical predictions for q_T predictions

J. High Energ. Phys. 2019, 31 (2019)

Ongoing analysis: Simon Schneider, Duke University

Belle II upgrades

KL and muon detector

2 innermost barrel RPCs and endcaps replaced with scintillators

Particle identification - TOP (barrel) - ARICH (forward)

> **TOP replaced TOF** ARICH replaced endcap ACC

positrons (4 GeV)