

Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre

Search for $\tau \longrightarrow 3\mu$ LFV decay @Belle II

On behalf of the Belle II collaboration

Alberto Martini University & INFN Roma Tre

58th International Winter Meeting on Nuclear Physics — 24 January 2020, Bormio, Italy

OUTLINE

- Introduction to Belle II
- Motivations
- Analysis strategy
- Results and future prospects

The Belle II experiment

Main experiments at B-factories of the past:

- Belle (KEK Laboratory, Japan)
- BaBar (SLAC Laboratory, California)

Important results: confirmation of the CKM mechanism in the SM, CP violation observation in the B meson system etc..

The Belle II experiment

Main experiments at B-factories of the past:

- Belle (KEK Laboratory, Japan)
- BaBar (SLAC Laboratory, California)

Important results: confirmation of the CKM mechanism in the SM, CP violation observation in the B meson system etc..

Expected improvement of integrated luminosity of a factor ~50 w.r.t. Belle: 50 ab⁻¹

$\tau \rightarrow 3\mu$ motivations

Status of the τ LFV @Belle II

Belle II expectations:

Improvement of ≤2 order of magnitude w.r.t. the actual limits

Alberto Martini - $\tau \rightarrow 3\mu$ analysis - Bormio 2019

Analysis motivations: $\tau \rightarrow 3\mu$

Lepton Flavor Violation (LFV) are allowed in various extensions of the Standard Model (SM) but it has never been observed

 $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\pm} \mu^{\mp}$ decay is predicted to be non vanishing by New Physics (NP) models:

- Supersymmetric models;
- Models with Higgs/little Higgs;
- Non-universal Z'
- Left-right symmetric models;

Analysis motivations: $\tau \rightarrow 3\mu$

Lepton Flavor Violation (LFV) are allowed in various extensions of the Standard Model (SM) but it has never been observed

 $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\pm} \mu^{\mp}$ decay is predicted to be non vanishing by New Physics (NP) models:

- Supersymmetric models;
- Models with Higgs/little Higgs;
- Non-universal Z'
- Left-right symmetric models;

Branching Fraction predictions down to ~10⁻¹⁰

Experimental upper limits from **Belle** and **BaBar**:

- Belle: 2.1 x 10⁻⁸ @90% confidence level
- BaBar: 3.3 x 10⁻⁸ @90% confidence level

... improved limits would further constrain the phase space of parameters of the models.

An observation of LFV in au decays would be a clear signature of NP

LFV new physics models

Ratios of BFs of τ LFV decays allow to discriminate NP models!

Physics models	$B(au ightarrow \mu \gamma)$	$B(au ightarrow \mu \mu \mu)$	
SM + v mixing	$10^{-49} \sim 10^{-52}$	$10^{-53} \sim 10^{-56}$ [1]	Ref. M. Blanke, et al.,
SM+heavy Majorana v_R	10 ⁻⁹	10 ⁻¹⁰	Charged Lepton Flavour Violation
Non-universal Z'	10 ⁻⁹	10 ⁻⁸	and (g – 2)µ in the Littlest Higgs Mode
SUSY SO(10)	10 ⁻⁸	10 ⁻¹⁰	Distinction from Supersymmetry.
mSUGRA + seesaw	10 ⁻⁷	10 ⁻⁹	JHEP 0705, 013 (2007).
SUSY Higgs	10 ⁻¹⁰	10 ⁻⁷	

Analysis strategy

Decay description and advantages

Analysis involving τ in Belle II are challenging because of:

- lot of missing energy
- leptons in the final state → lot of background sources

Decay description and advantages

Analysis involving τ in Belle II are challenging because of:

- lot of missing energy
- leptons in the final state → lot of background sources

Decay description and advantages

Analysis involving τ in Belle II are challenging because of:

- lot of missing energy
- leptons in the final state → lot of background sources

Requirement adopted to reconstruct the decay:

1p=1prong

• thrust: discriminate between spherical and boosted events;

Requirement adopted to reconstruct the decay:

1p=1prong

- thrust: discriminate between spherical and boosted events;
- the two τ point to opposite **hemispheres**;

Requirement adopted to reconstruct the decay:

1p=1prong

- thrust: discriminate between spherical and boosted events;
- the two τ point to opposite **hemispheres**;
- Exactly 4 tracks coming nearby the IP;

Signal determination: signal region

The best way to identify the signal is to look at the τ mass and ΔE

$$\Delta \mathbf{E} \equiv \mathbf{E}_{\tau} - \mathbf{E}_{\text{beam}} \mathbf{n}_{\sqrt{S/2}}$$

$$\mathcal{E}_{3\mu}^{\tau mass'} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \tau mass' \\ \tau \Delta E' \end{pmatrix}$$
with $\theta \simeq 75^{\circ}$

Signal determination: signal region

The best way to identify the signal is to look at the τ mass and ΔE

Belle I

\DeltaE' VS au mass' of signal au

The most powerful discriminating variable between signal and background is the μ ID

The most powerful discriminating variable between signal and background is the μ ID

Momentum ranges:

- Pµ<0.7 GeV: μ do not reach the μ detector (KLM)
- 0.7<Pµ<1 GeV: µ reach KLM but not many layers are crossed
- Pµ>1 GeV: µ reach KLM and many layers are crossed

The most powerful discriminating variable between signal and background is the μ ID

Momentum ranges:

- Pµ<0.7 GeV: μ do not reach the μ detector (KLM)
- 0.7<Pµ<1 GeV: µ reach
 KLM but not many layers are crossed
- Pµ>1 GeV: µ reach KLM and many layers are crossed

Optimization of the μ ID cuts depending on 3 momentum ranges

Extract the best combination of tight cuts for the analysis

Signal-background discrimination depends on the tag-side track

In case of leptonic tag the missing energy on the tag side is high (2 neutrinos) and leptonID performances come into play

Signal-background discrimination depends on the tag-side track

In case of hadronic tag the missing energy on the tag side is lower (1 neutrino) and hadronID performances come into play

Backgroud sources: $u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}$ (continuum) + $\tau\tau, \mu\mu\gamma, 4\mu, ee\mu\mu$

Most discriminating variables are:

• Tag side $\tau \Delta E = E_{\tau_{tag}} - E_{beam} \rightarrow$ suppress continuum background (mostly hadronic tag)

- Missing momentum of the event \rightarrow suppress continuum background and $e^+e^- \rightarrow 4\mu$
- Tag side τ mass \rightarrow suppress continuum background (mostly leptonic tag)
- Thrust → to suppress continuum background

Backgroud sources: $u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}$ (continuum) + $\tau\tau, \mu\mu\gamma, 4\mu, ee\mu\mu$

Most discriminating variables are:

• Tag side $\tau \Delta E = E_{\tau_{tag}} - E_{beam} \rightarrow$ suppress continuum background (mostly hadronic tag)

- Missing momentum of the event \rightarrow suppress continuum background and $e^+e^- \rightarrow 4\mu$
- Tag side τ mass \rightarrow suppress continuum background (mostly leptonic tag)
- Thrust → to suppress continuum background

Final results and conclusions

Optimized cut results

Optimized cut results

Preliminary MC results

	# expected bkg	Sig Efficiency (%)	Punzi fom value
leptonic tag	1	11.58	0.063
hadronic tag	0	10.82	0.129
Total	1	22.4	0.123

No data-MC discrepancies are taken into account but...

Preliminary MC results

	# expected bkg	Sig Efficiency (%)	Punzi fom value
leptonic tag	1	11.58	0.063
hadronic tag	0	10.82	0.129
Total	1	22.4	0.123

No data-MC discrepancies are taken into account but...

BaBar estimation of the same fom	0.44	6.6	0.044
Belle estimation of the same fom	0.13	7.6	0.064

The efficiency is high: ~3 times than Belle/BaBar but still very preliminary → a deeper understanding of the differences is needed for next results

Preliminary MC results

	# expected bkg	Sig Efficiency (%)	Punzi fom value
leptonic tag	1	11.58	0.063
hadronic tag	0	10.82	0.129
Total	1	22.4	0.123

No data-MC discrepancies are taken into account but...

BaBar estimation of the same fom	0.44	6.6	0.044
Belle estimation of the same fom	0.13	7.6	0.064

The efficiency is high: ~3 times than Belle/BaBar but still very preliminary → a deeper understanding of the differences is needed for next results

No systematics are taken into account yet → BF limit estimation will come after a complete systematic study

Conclusion and future prospects

	# expected bkg	Sig Efficiency (%)
Belle II preliminary results	1	22.4
BaBar	0.44	6.6
Belle	0.13	7.6

the preliminary efficiency if ~3 times wrt Belle/BaBar \rightarrow a deeper understanding of the differences is needed for next results

BF limit coming soon with systematics studies

Conclusion and future prospects

	# expected bkg	Sig Efficiency (%)
Belle II preliminary results	1	22.4
BaBar	0.44	6.6
Belle	0.13	7.6

The preliminary efficiency if ~3 times wrt Belle/BaBar \rightarrow a deeper understanding of the differences is needed for next results

NEXT STEP

- Use a larger MC sample → get a more stable optimisation procedure and reduce uncertainties on expected background events;
- Insertion of data-MC discrepancies;
- Look at the data outside and inside the signal region.

Emergency slides!!

Dataset

MC signal sample: 10000 events Signal channel: $e^+e^- \rightarrow \tau [\rightarrow 1 \text{ prong}] \tau [\rightarrow 3\mu]$

• Low multiplicity weights:

- $e+e- \rightarrow e+e-\mu+\mu$ 100M evts & Int Lumi:5.29fb⁻¹ \rightarrow Weight: 94.5
- $e+e- \rightarrow \mu+\mu-\mu+\mu-2M$ evts & Int Lumi: 5.88ab⁻¹ \rightarrow Weight: 0.085

- $e+e- \rightarrow \mu + \mu (\gamma)$ 55M evts
- & Int Lumi:47.91 fb⁻¹ \rightarrow Weight: **10.4**

Comparison with Belle results

Deeper investigation of the variables used by Belle/BaBar: It seems that there are no more powerful variables available

Reproduced Belle results to check the efficiency discrepancy

Applying Belle cuts I got ~8% efficiency, the main reasons are:

- μID and p_µ>0.6;
- track on the tag side not identified as μ.

A better µID algorithm is a key role in the analysis final results

Belle μ ID efficiency $\simeq 85\%$ BaBar μ ID efficiency $\simeq 77\%$

Belle II efficiency $\simeq 93\%$

µ identification

Muon identification process

Geant4 is used to extrapolate tracks reconstructed from the inner detectors by the tracking software

When the track reaches the KLM layers the μ ID algorithm provides the probability of the track to be a μ .

µ identification

L_{Ln}= probability of having a hit in the Ln layer, for a particle hypothesis (MC pre-calculation)

 $L_{long} = \prod_{n=1}^{n_{OuterExt}} L_{Ln}$ is the longitudinal probability of a track to be the hypothesised particle.

In order to correctly treat inefficient layers, if there are no hits in the layer \rightarrow take into account efficiencies and store: 1- L_{Ln} * Eff_{Ln}