Measurements of τ decays at Belle and Belle II

Lake Louise Winter Institute 2025

Wednesday 5th March, 2025

Robin Leboucher, on behalf of the Belle and Belle II collaborations

INE UNIVERSIIY OF BRITISH COLUMBIA

SuperKEKB/Belle II for τ^- physics

 Hermetic detector (90% solid angle coverage) Excellent vertexing and track reconstruction • Good particle identification (leptonID, π/K separation) Measurements of τ decays at Belle and Belle II - Lake Louise 2025 - Robin Leboucher

KEKB (1999-2010) e^-e^+ collider at 10.58 GeV: • Recorded luminosity $\approx 1 \ ab^{-1}$

SuperKEKB e^-e^+ collider at 10.58 GeV: •World Record instantaneous luminosity = $5.1 \times 10^{34} cm^{-2}s^{-1}$ •Recorded luminosity = $575 fb^{-1}$ •Run 1 = 424 fb^{-1} (363 @ $\Upsilon(4S)$ + 61 off-resonance)

gths for
$$\tau^-$$
 physics:
gh cross-section:
 $e^-e^+ \rightarrow \Upsilon(4S)) = 1.05 \ nb$
 $\sigma(e^-e^+ \rightarrow c\overline{c}) = 1.3 \ nb$
 $\sigma(e^-e^+ \rightarrow \tau^-\tau^+) = 0.92 \ nb$

Good missing energy reconstruction:

Clean collision environment

ry

2

Belle II τ^- Physics

- The τ^- is the heaviest lepton in the SM:
 - Decays into leptons and hadrons
 - Decays into one or three final-state particles
 - Sensitive to more new physics models (large mass)

Measurements of τ decays at Belle and Belle II - Lake Louise 2025 - Robin Leboucher

Tests of the standard model (SM):

• τ^{-} mass

• τ^{-} lifetime

• Electric/Magnetic DM

- $V_{\mu s}$ measurement
- Lepton flavour
- universality

 Michel parameters CP violation

Direct new physics searches:

- Lepton flavour violation (LFV)
- Baryon number violation (BNV)
- Heavy neutrinos

*In this talk

Working with τ^- at Belle (II)

In e^-e^+ , τ^- pairs are produced back to back and boosted \Rightarrow We can exploit the τ^- pairs geometry by defining two hemispheres wrt to a plane perpendicular to the thrust axis \hat{t}_{thrust} maximising $T = \max_{\hat{t}} \left| \frac{2}{1} \right|$

Reconstruct three kinds of topologies:

$$\frac{\mathbf{E}_{i} \left[\mathbf{p}_{i}^{CMS} \cdot \hat{\mathbf{t}} \right]}{\sum_{i} \left[\mathbf{p}_{i}^{CMS} \right]}$$

New Physics Direct Searches

 In SM, the Charged Lepton Flavour Violation is allowed through weak charged current and neutrino oscillation

• Order $\mathcal{O}(10^{-55}) \Rightarrow$ no Flavour Violation in current experiments

• Various New Physics predict Lepton Flavour Violation at observable rates $\mathcal{O}(10^{-8} - 10^{-10})$

• e.g leptoquarks for $\tau^- \to \ell^- V^0$ related $b \to c \tau \nu$ anomalies

Measurements of τ decays at Belle and Belle II - Lake Louise 2025 - Robin Leboucher

C)	
4	Ś	3

- Belle II (5 ab⁻¹)
- Belle II (50 ab⁻¹)

Physics Models	$\mathscr{B}(\tau^- \to \mu^- \mu^+ \mu^-)$
SM	10 -55
SM + Seesaw	10 -10
SUSY + Higgs	1 0-8
SUSY + SO(10)	10 -10
Non-universal Z'	1 0-8

A lot of interesting decays at e^-e^+ colliders with 50 modes:

• $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ most accessible

- $\tau^- \rightarrow \ell^- \phi$ linked to $b \rightarrow c \tau \nu$ within the Leptoquarks models
 - $\tau^- \rightarrow \Lambda(\Lambda)\pi^-$ violated the Baryon number \Rightarrow condition for matter/antimatter asymmetry
- $\tau^- \rightarrow \ell^- \alpha$ new boson candidate for dark matter

Belle II - $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ Lepton Flavour Violation

- Almost free from SM background Excellent resolution on energy and momentum Also probed by LHC experiments Existing measurements: 2.1×10^{-8} by Belle 2.9×10^{-8} by CMS
- Signal efficiency challenge:
- Untagged τ reconstruction to cover more final states
- BDT classifier: reject main backgrounds $e^-e^+ \rightarrow q\overline{q}$ using signal, rest of event and kinematic variables
- $\varepsilon_{sig} \simeq 20.41 \,\%$, 3 times Belle efficiency
- Extract expected backgrounds $0.7^{+0.6}_{-0.5} \pm 0.01$ by rescaling yields from sidebands data in signal region (ABCD)
- Observed 1 event in $424 fb^{-1}$
- Set 90% CL upper limit on the branching fraction $\mathscr{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 1.9 \times 10^{-8}$
- World's best limit Results confirmed by a conventional 3 by 1 tag method

Belle II - $\tau^- \rightarrow \Lambda \pi^- / \tau^- \rightarrow \overline{\Lambda} \pi^-$ Baryon Number Violation

- BNV is a key ingredient to explain asymmetry of matter
- Plenty of BSM scenari allow it
- Belle result: $7.2(14) \times 10^{-8}$ with $154 fb^{-1}$
- Reconstruct 4 charged particles (0 net charge) in
 1x3 topology
- $\Lambda(\overline{\Lambda})$ reconstructed from $p(\overline{p})$ and π^-

 Background suppression: loose preselection (flight significance most discriminant) + gradient BDT

• $\varepsilon_{sig} \simeq 9.5(9.9) \,\%$ for $\tau^- \to \Lambda(\overline{\Lambda})\pi^-$

- Extract expected backgrounds $1.0^{+1.3}_{-1.1}(0.5\pm0.6)$ p(p) by rescaling yields from sidebands data in signal region

• No observed event in $364fb^{-1}$ • Set 90% CL upper limit on the branching fraction $\mathscr{B}(\tau^- \to \Lambda(\overline{\Lambda})\pi^-) < 4.7(4.3) \times 10^{-8}$ • New, most stringent limit

Belle - Search for Heavy Neutral Lepton

- Can interact with u_{SM} via $N \leftrightarrow
 u_{SM}$ mixing
- Long lifetime \rightarrow Displaced vertex
- Probe $m_N < m_\tau$ in $\tau^- \to N\pi^-$ decay

- Reconstruction in 1x1 topology:
 - Tag $\tau^+ \to \pi^+ \nu_{\tau}$
 - Signal $\tau^- \to N(\to \mu^- \mu^+) \pi^-$:
 - Fit the $\mu^-\mu^+$ displaced vertex
- Use the **displaced vertex** properties to extract m_N and suppress background to unit level

• First-time $N \rightarrow \mu^- \mu^+$ displaced vertex method Observation in agreement with background expectations with $915 fb^{-1}$ • Set limit on the mixing coefficient $|V_{N\nu_{-}}|^2$ between $300 < m_N < 1600 \text{ MeV}/c^2$

Relative Density

Summary

• Belle and Belle II are leading the τ^- physics research on several key areas:

- Various studies related to Standard Model parameters
- Searches for phenomena beyond the Standard Model

• There are many opportunities for improvement in these areas:

- Increasing the size of the data sample
- Enhancing analysis techniques and reducing systematic uncertainties
- Developing more accurate physics models

• Many more results to come: This is only the beginning for precision and rare decay searches with τ^- at Belle II

Thank you!

Measurements of τ decays at Belle and Belle II - Lake Louise 2025 - Robin Leboucher

THE UNIVERSITY OF BRITISH COLUMBIA Backups

Belle II - $\tau^- \rightarrow e^{\pm} \ell^{\mp} \ell^-$ Lepton Flavour Violation

• Extend $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ study to 5 modes: Existing measurements: $1.5 - 2.7 \times 10^{-8}$ by Belle Signal efficiency challenge: Tag side • Untagged τ reconstruction to cover more final states • Preselection rectangular cuts • Data (blind) driven BDT classifier: • reject main backgrounds $\ell^- \ell^+ \ell^- \ell^+$ (mismodeled ISR/FSR) training sample away from the fitted region rely on signal, ROE and kinematic variables • Resulting final $\varepsilon_{sig} \simeq 15 - 24 \%$ • Extract expected by fitting M_{eff} : $PDF_{tot}\left(M_{e\ell\ell}\right) = \mathscr{B}\left(\tau^{-} \to e^{\mp}\ell^{\pm}\ell^{-}\right) \cdot \mu \cdot PDF_{\mathsf{sig}}\left(M_{e\ell\ell}\right) + N_{bg} \cdot PDF_{bg}\left(M_{e\ell\ell}\right)$ $\mu = 2\varepsilon_{sig}\sigma_{\tau\tau}\mathscr{L}$ PDF_{sig} is a double-sided Crystal Ball PDF_{bg} is an exponential

- No significant signal was observed in $424 fb^-$
- Set 90% CL upper limit on the branching fraction
- The most stringent upper limit on all modes

Measurements of τ decays at Belle and Belle II - Lake Louise 2025 - Robin Leboucher

 $\mu^- e^+ \mu^-$

1.54

1.46

 In EFT, it can constrain different types (e.g two-lepton and two-quark-operato Existing measurements: $2.3(2.6) \times 10$

Signal efficiency challenge:

- •Reconstruct 4 charged particles (0 net charged particles)
- $K_{\rm S}^0$ reconstructed from $\pi^-\pi^+$
- •Preselection rectangular cuts
- BDT classifier:
- different training on each Belle and Belle I
- use signal (tag) τ^- , K^0_S and track kinemati neutrals variables
- Resulting final $\varepsilon_{sig} \simeq 10\%$
- Extract expected background by fitting $i_{\ell K_{c}^{0}}$:

 PDF_{bg} is an exponential

• No significant signal was observed in $424fb^{-1}$ Belle II and $980fb^{-1}$ Belle Set a combined 90% CL upper limit on the branching fraction $\mathscr{B}(\tau^- \to e^-(\mu^-)K_s^0) = 0.8(1.2) \times 10^{-8}$ Most stringent limit on all modes

