

Charm Physics at Belle and Belle II

Yang Li (Fudan University) on behalf of the Belle and Belle II collaborations

Lake Louise Winter Institute 2025 Mar. 02~08, 2025

Outline

- □ Belle and Belle II experiments
- □ Charmed mesons
- Search for *CP* violation in $D_{(s)}^+ \to K_S^0 K^- \pi^+ \pi^-$ decays Belle + Belle II [arXiv: 2409.15777]
- Time-integrated *CP* asymmetry in $D^0 \rightarrow K_S^0 K_S^0$ decays

Belle + Belle II [PRD 111, 012015 (2025)]

• $D^0 - \overline{D}^0$ mixing parameters in $D^0 \to K_S^0 \pi^+ \pi^-$ decays

Belle + Belle II [arXiv: 2410.22961]

□ Charmed baryons

Summary

• Two-body decays of Ξ_c^0 and Ξ_c^+

Belle + Belle II [JHEP 10 045 (2024); arXiv: 2412.10677; PRELIMINARY]

Belle and Belle II experiments

- > Belle and Belle II collect(ed) data at asymmetric e^+e^- colliders at of near the $\Upsilon(4S)$ resonance.
- ✓ KEKB (1999-2010), Peak luminosity = 2.1×10^{34} cm⁻²s⁻¹, L_{int}~1 ab⁻¹.
- ✓ SuperKEKB (2019~), Peak luminosity = $5.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, Run 1(2019-2022): L_{int}~427 fb⁻¹; Run 2(2024~): L_{int}~150 fb⁻¹.
- ► Belle and Belle II are now **synergic** experiments.
- \checkmark Belle data can be analyzed within the Belle II software framework.
- ✓ Common review procedures since summer of 2023.
- ✓ Especially important for charm analyses, where large statistics is crucial to improve the precision.

Streamlines combined analyses

Charm physics at Belle (II)

- \succ Two ways to produce the charm hadrons at B-factories:
- Two charmed hadrons produced from continuum, along with fragmentation particles: $e^+e^- \rightarrow e^-$ • $c\bar{c} \rightarrow X_c, \sigma(e^+e^- \rightarrow c\bar{c}) \sim 1.3$ nb @ $\sqrt{s} = 10.58$ GeV.
- One or more charmed hadrons produced in B mesons decays: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B} \rightarrow X_c$. •

 \succ Full topics for charm physics:

- *CP* violation
- $D^0 \overline{D}^0$ mixing
- Lifetimes of charm hadrons ullet
- Rare decay ullet
- Charmed baryons

Search for *CP* violation in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^-$ decays

First search for *CP* violation in $D_{(s)}^+ \to K_S^0 K^- \pi^+ \pi^+$ decays using six observables (X) based on the triple product and quadruple product of the momenta of final-state particles, and the particles' helicity angles.

1. Triple-product (TP) $C_{TP} = \vec{p}_{K^-} \cdot (\vec{p}_{K_S^0} \times \vec{p}_{\pi_1^+})$

- 2. Quadruple-product (QP) $C_{QP} = (\vec{p}_{K^-} \times \vec{p}_{\pi_h^+}) \cdot (\vec{p}_{K_s^0} \times \checkmark$ The asymmetries about zero for both $D_{(s)}^+$ and $D_{(s)}^-$: $\vec{p}_{\pi_1^+}$)
- 3. $C_{TP}C_{QP}$
- 4. $\cos \theta_{K_S^0} \cos \theta_{K^-}$
- 5. $\cos \theta_{K_S^0} \cos \theta_{K^-} C_{TP}$
- 6. $\cos \theta_{K_S^0} \cos \theta_{K^-} C_{QP}$

Belle + Belle II~1.4/ab arXiv: 2409.15777

 $A_{X}(D_{(s)}^{+}) = \frac{N(X > 0) - N(X < 0)}{N(X > 0) + N(X < 0)}$ $\overline{A}_{\overline{X}}(D_{(s)}^{-}) = \frac{\overline{N}(\overline{X} > 0) - \overline{N}(\overline{X} < 0)}{\overline{N}(\overline{X} > 0) + \overline{N}(\overline{X} < 0)}$

 A_X and $\overline{A}_{\overline{X}}$ are *CP*-conjugate quantities.

✓ *CP*-violating parameter

$$A_{CP}^{X} = \frac{A_{X}(D_{(s)}^{+}) - \overline{A}_{\overline{X}}(D_{(s)}^{-})}{2}$$
$$A_{CP}^{X} \neq 0 \text{ indicates } CP \text{ violation}$$

Search for *CP* violation in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^-$ decays

- > The A_{CP}^{X} is extracted by performing a simultaneous fit to the $M(D_{(s)})$ distributions of four subsamples as determined by the charge of $D_{(s)}$ and the sign of X.
- $N(D_{(s)}^+, X > 0) = \frac{N_+}{2}(1 + A_X)$
- $N(D_{(s)}^+, X < 0) = \frac{N_+}{2}(1 A_X)$
- $N(D_{(s)}^{-}, \overline{X} > 0) = \frac{N_{-}}{2} (1 + A_{X} 2A_{CP}^{X})$
- $N(D_{(s)}^{-}, \overline{X} < 0) = \frac{N_{-}}{2}(1 A_{X} + 2A_{CP}^{X})$

Belle + Belle II~1.4/ab arXiv: 2409.15777

✓ No evidence for CPV is found (A_{CP}^{X} in units of 10^{-3}).

	X	\mathcal{A}_{CP}^X Belle	\mathcal{A}_{CP}^X Belle II	Combined \mathcal{A}_{CP}^X	Significance
D^+	C_{TP}	$-4.0 \pm 5.9 \pm 3.0$	$-0.2 \pm 7.0 \pm 1.8$	$-2.3 \pm 4.5 \pm 1.5$	0.5σ
	$C_{\rm QP}$	$-1.0 \pm 5.9 \pm 2.5$	$-0.4 \pm 7.0 \pm 2.4$	$-0.7 \pm 4.5 \pm 1.7$	0.2σ
	$C_{\mathrm{TP}} C_{\mathrm{QP}}$	$+6.4 \pm 5.9 \pm 2.2$	$+0.6 \pm 7.0 \pm 1.3$	$+3.9 \pm 4.5 \pm 1.1$	0.8σ
	$\cos \theta_{K^0_s} \cos \theta_{K^-}$	$-4.7 \pm 5.9 \pm 3.0$	$-0.6 \pm 6.9 \pm 3.0$	$-2.9\pm4.5\pm2.1$	0.6σ
	$C_{\mathrm{TP}} \cos \theta_{K_s^0} \cos \theta_{K^-}$	$+1.9 \pm 5.9 \pm 2.0$	$-0.2 \pm 7.0 \pm 1.9$	$+1.0 \pm 4.5 \pm 1.4$	0.2σ
	$C_{\rm QP}\cos heta_{K^0_S}\cos heta_{K^-}$	$+14.9 \pm 5.9 \pm 1.4$	$+7.0 \pm 7.0 \pm 1.6$	$+11.6 \pm 4.5 \pm 1.1$	2.5σ
D_s^+	C_{TP}	$-0.3 \pm 3.1 \pm 1.3$	$+1.0 \pm 3.9 \pm 1.1$	$+0.2 \pm 2.4 \pm 0.8$	0.1σ
	$C_{\rm QP}$	$+0.6 \pm 3.1 \pm 1.2$	$+2.0 \pm 3.9 \pm 1.4$	$+1.1 \pm 2.4 \pm 0.9$	0.4σ
	$C_{\mathrm{TP}} C_{\mathrm{QP}}$	$+1.5 \pm 3.2 \pm 1.4$	$-2.7\pm3.9\pm1.7$	$-0.2 \pm 2.5 \pm 1.1$	0.1σ
	$\cos \theta_{K^0_S} \cos \theta_{K^-}$	$-3.7 \pm 3.1 \pm 1.1$	$-6.3 \pm 3.9 \pm 1.2$	$-4.7\pm2.4\pm0.8$	1.8σ
	$C_{\mathrm{TP}}\cos heta_{K_{c}^{0}}\cos heta_{K^{-}}$	$-4.4 \pm 3.2 \pm 1.4$	$+0.8\pm3.9\pm1.4$	$-2.2 \pm 2.5 \pm 1.0$	0.8σ
	$C_{\rm QP}\cos heta_{K_S^0}\cos heta_{K^-}$	$-1.6 \pm 3.1 \pm 1.3$	$-0.0 \pm 3.9 \pm 1.7$	$-1.0 \pm 2.4 \pm 1.0$	0.4σ

Most precise measurements of triple-product asymmetry for D⁺_s decays and for SCS D⁺ decays.
 The first use of the other A^X_{CP} asymmetries to search for *CP* violation in the charm sector.

Time-integrated *CP* asymmetry in $D^0 \rightarrow K^0_S K^0_S$

- \succ The D⁰ \rightarrow K⁰_SK⁰_S is a singly Cabibbo-suppressed decay, which involves the interference between c \rightarrow uss and $c \rightarrow ud\bar{d}$ amplitudes. Belle + Belle II~1.4/ab PRD 111 012015 (2025)
- \triangleright Such interference can generate *CP* asymmetries at the 1% level.
- \succ The world-average value of the *CP* asymmetry, $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$: $(-1.9 \pm 1.0)\%$, is limited by statistic

$$A_{CP} \equiv \frac{\Gamma(D^0 \to K^0_S K^0_S) - \Gamma(\overline{D}^0 \to K^0_S K^0_S)}{\Gamma(D^0 \to K^0_S K^0_S) + \Gamma(\overline{D}^0 \to K^0_S K^0_S)}$$

- Γ is the time-integrated decay rate.
- \triangleright Experiment extraction on A_{CP} : taking $D^0 \rightarrow K^+K^-$ as a control mode to correct for production and $A_{\text{raw}} = \frac{N_{D^0} - N_{\overline{D}^0}}{N_{D^0} + N_{\overline{D}^0}}$, tagged with $D^{*+} \rightarrow D^0 \pi^+$ decays detection asymmetries

$$A_{CP}^{K_{S}^{0}K_{S}^{0}} = \left(A_{raw}^{K_{S}^{0}K_{S}^{0}} - A_{raw}^{K^{+}K^{-}}\right) + A_{CP}^{K^{+}K^{-}}$$

[PRL 131, 091802 (2023); PRD 104, 072010 (2021)]

 $A_{CP}^{K^+K^-} = A_{CP}^{dir}(D^0 \to K^+K^-) + \Delta Y = (6.7 \pm 5.4) \times 10^{-4}$

Time-integrated *CP* asymmetry in $D^0 \rightarrow K_S^0 K_S^0$

$D^0-\overline{D}^0$ mixing parameters in $D^0 \to K_s^0\pi^+\pi^-$ decays

Width of the $D_{1/2}$ state

 \succ D⁰- \overline{D}^0 mixing parameters:

 $x = \frac{m_1 - m_2}{\Gamma} \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$

Mass of the $D_{1/2}$ state

Belle + Belle II~1.3/ab arXiv: 2410.22961

Mass eigenstates:

 $|D_{1,2}\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$

 $|\mathbf{p}|^2 + |\mathbf{q}|^2 = 1$

- World average values: $x = (4.07 \pm 0.44) \times 10^{-3}$ $y = (6.45^{+0.24}_{-0.23}) \times 10^{-3}$
- ➢ By splitting the Dalitz plot into bins, the need for an explicit amplitude model is avoided.
- ► Using combined Belle and Belle II datasets, we perform a model-independent measurement of the $D^0 \overline{D}^0$ mixing parameters using D^{*+} -tagged $D^0 \to K_s^0 \pi^+ \pi^-$ decays.

 $|q/p| = 0.994^{+0.016}_{-0.015}$ [PRD 107 052008 (2023)] $arg(q/p) = (-2.6^{+1.1}_{-1.2})^{\circ}$

$D^0-\overline{D}^0$ mixing parameters in $D^0 \to K_s^0\pi^+\pi^-$ decays

- Signal and background are separated using fits to the two-dimensional distribution of D⁰ mass and energy released Q in the D*+.
 Belle + Belle II~1.3/ab arXiv: 2410.22961
- The mixing parameters are determined using an unbinned maximum-likelihood fit to the (t, σ_t) distributions of the candidates populating the signal region and split into the 16 Dalitz plot bins.

Study of two-body decays of Ξ_c^0 and Ξ_c^+

□ In hadronic weak decays of charmed baryons, nonfactorizable contributions play a crucial role and pose significant challenges for theoretical predictions.

In 2019, Belle measured the absolute branching fractions of $\Xi_c^0 \to \Xi^- \pi^+ [1]$ and $\Xi_c^+ \to \Xi^- \pi^+ \pi^+ [2]$, sparking renewed interest in the study of Ξ_c^0 and Ξ_c^+ decays.

Theoretical calculations for the two-body hadronic weak decays of \(\mathbb{Z}_c^0\) and \(\mathbb{Z}_c^+\) have been performed based on dynamical model calculations and SU(3) flavor symmetry methods [3-9].
 Using the combined data from Belle and Belle II to search for new decay modes of \(\mathbb{Z}_c^0\) and \(\mathbb{Z}_c^+\), and to validate different theoretical models.

[1] PRL 122 (2019) 082001; [2] PRD 100 (2019) 031101; [3] PLB 794 (2019) 19; [4] PRD 101 (2020) 014011; [5] JHEP 02 (2020) 165; [6] JHEP 09 (2022) 35; [7] JHEP 03 (2022) 143; [8] PRD 108 (2023) 053004; [9] JHEP 02 (2023) 235... 11

Observations of $\Xi_c^0 \rightarrow \Xi^0 h^0$, $h^0 = \pi^0 / \eta / \eta'$

The Cabibbo-favored decays $\Xi_c^0 \to \Xi^0 \pi^0$, $\Xi^0 \eta$, and $\Xi^0 \eta'$ are observed for the first time.

Taking the $\Xi_c^0 \rightarrow \Xi^- \pi^+$ as the normalization mode, the ratios of branching fractions are measured to be:

$$\frac{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{0} \pi^{0})}{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})} = (0.48 \pm 0.02 \pm 0.03)$$
$$\frac{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})}{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})} = (0.11 \pm 0.01 \pm 0.01)$$
$$\frac{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})}{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})} = (0.08 \pm 0.02 \pm 0.01)$$

 \square Taking $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.43 \pm 0.32)\%$, we obtain

$$\begin{split} \mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) &= (6.9 \pm 0.3 \pm 0.5 \pm 1.5) \times 10^{-3} \\ \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) &= (1.6 \pm 0.2 \pm 0.2 \pm 0.4) \times 10^{-3} \\ \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') &= (1.2 \pm 0.3 \pm 0.1 \pm 0.3) \times 10^{-3} \end{split}$$

The first and second uncertainties above are statistical and systematic, \bar{z} respectively, while the third ones arise from the uncertainty in $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$.

Measurement of α asymmetry of $\Xi_c^0\to \Xi^0\pi^0$

> The interference between the parity-violating and parity-conserving amplitudes leads to an asymmetry in the angular decay distribution, quantified by the parameter α :

 $\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 \pi^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$

- $\alpha(\Xi^0 \to \Lambda \pi^0) = -0.349 \pm 0.009$
- θ_{Ξ^0} is the angle between the Λ momentum vector and the direction opposite to the Ξ_c^0 momentum vector in the Ξ^0 rest frame.
- By performing a simultaneous fit to Belle and Belle II data, we obtain

 $\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15 (\text{stat.}) \pm 0.23 (\text{syst.})$

13

Measurements of
$$\mathcal{B}(\Xi_c^+ \to pK_S^0/\Lambda \pi^+/\Sigma^0 \pi^+)$$

□ The singly-suppressed decays Ξ⁺_c → pK⁰_S, Λπ⁺, and Σ⁰π⁺ are observed for the first time.
□ Taking the Ξ⁺_c → Ξ⁻π⁺π⁺ as the normalization mode, the ratios of branching fractions are measured to be:
$$\frac{B(Ξ+c → pK0S)}{B(Ξ+c → Ξ-π+π+)} = (2.47 \pm 0.16 \pm 0.07)\%$$
$$\frac{B(Ξ+c → Λπ+)}{B(Ξ+c → Σ-π+π+)} = (1.56 \pm 0.14 \pm 0.09)\%$$
$$\frac{B(Ξ0c → Σ0π+)}{B(Ξ+c → Ξ-π+π+)} = (4.13 \pm 0.26 \pm 0.22)\%$$

 \square Taking $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (2.9 \pm 1.3)\%$, we obtain

 $\begin{aligned} &\mathcal{B}\big(\Xi_c^+ \to pK_S^0\big) = (7.16 \pm 0.46 \pm 0.20 \pm 3.21) \times 10^{-4} \\ &\mathcal{B}(\Xi_c^+ \to \Lambda \pi^+) = (4.52 \pm 0.41 \pm 0.26 \pm 2.03) \times 10^{-4} \\ &\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+) = (1.20 \pm 0.08 \pm 0.07 \pm 0.54) \times 10^{-3} \end{aligned}$

The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$.

14

Measurements of
$$\mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0 / \Xi^0 K^+ / \Xi^0 \pi^+)$$

□ Taking the $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$ as the normalization mode, the ratios of branching fractions are measured to be

 $\frac{\mathcal{B}(\Xi_{c}^{+} \to \Sigma^{+} K_{S}^{0})}{\mathcal{B}(\Xi_{c}^{+} \to \Xi^{-} \pi^{+} \pi^{+})} = (6.4 \pm 0.7 \pm 0.3)\% \text{ [for the first time]}$ $\frac{\mathcal{B}(\Xi_{c}^{+} \to \Xi^{0} K^{+})}{\mathcal{B}(\Xi_{c}^{+} \to \Xi^{-} \pi^{+} \pi^{+})} = (1.6 \pm 0.2 \pm 0.1)\% \text{ [for the first time]}$ $\frac{\mathcal{B}(\Xi_{c}^{+} \to \Xi^{0} \pi^{+})}{\mathcal{B}(\Xi_{c}^{+} \to \Xi^{-} \pi^{+} \pi^{+})} = (23.3 \pm 0.8 \pm 1.0)\%$

 $\square \text{ Taking } \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (2.9 \pm 1.3)\%, \text{ we obtain}$

 $\begin{aligned} &\mathcal{B}\big(\Xi_{\rm c}^+ \to \Sigma^+ {\rm K}_{\rm S}^0\big) = (1.86 \pm 0.20 \pm 0.08 \pm 0.83) \times 10^{-3} \\ &\mathcal{B}(\Xi_{\rm c}^+ \to \Xi^0 {\rm K}^+) = (0.46 \pm 0.07 \pm 0.02 \pm 0.21) \times 10^{-3} \\ &\mathcal{B}(\Xi_{\rm c}^+ \to \Xi^0 {\pi}^+) = (6.77 \pm 0.24 \pm 0.30 \pm 3.03) \times 10^{-3} \end{aligned}$

The ratio of $\mathcal{B}(\Xi_{c}^{+} \to \Xi^{0}K^{+})$ and $\mathcal{B}(\Xi_{c}^{+} \to \Xi^{0}\pi^{+})$ are determined to be

$$\frac{\mathcal{B}(\Xi_{c}^{+} \to \Xi^{0} K^{+})}{\mathcal{B}(\Xi_{c}^{+} \to \Xi^{0} \pi^{+})} = (6.8 \pm 1.1 \pm 0.4)\%$$

Belle + Belle II~1.4/ab PRELIMINARY $\int \mathcal{L}dt = 983.0 \text{ fb}^{-1}$ $\int \mathcal{L}dt = 427.9 \text{ fb}^{-1}$ Belle Belle II - Data - Total fi MeV/c² MeV/c² - Total Bkg Total Bkg preliminary preliminary Events/4 7.4σ 2.45 2.5 M(Σ⁺K⁰₂) (GeV/c²) 2.55 2.45 2.5 M(Σ⁺K⁰_c) (GeV/c²) Belle $\int \mathcal{L}dt = 983.0 \text{ fb}^{-1}$ Belle II $\int \mathcal{L}dt = 427.9 \text{ fb}^{-1}$ - Total fi (b) nts/4 MeV/c² MeV/c Total Bkg Total Bkg preliminary Broken Signa Broken Signa preliminary 400 $> 10\sigma$ $> 10\sigma$ 2.45 2.5 M(Ξ⁰π⁺) (GeV/c²) 2.45 2.5 Μ(Ξ⁰π⁺) (GeV/c²) $\int \mathcal{L}dt = 983.0 \text{ fb}^{-1}$ $\int \mathcal{L}dt = 427.9 \text{ fb}^{-1}$ — Total f (c) MeV/c^2 preliminary preliminary 5.4σ

 $M(\Xi^0 K^+)$ (GeV/c²

15

Л(Ξ⁰K⁺) (GeV/c²

Summary

- Belle and Belle II offer a unique environment and sensitivity for SM measurements, as well as for the search for *CP* violation in the charm sector.
- □ In the past year, some fascinating results have been achieved in the search for *CP* violation of D mesons, measurement of $D^0 \overline{D}^0$ mixing, and the $\Xi_c^{+/0}$ decays using the combined data from Belle and Belle II.
- ■Belle II has started data taking for Run 2, and more precise and improved results are on the way. Stay tuned!

Backup

combined measurement

