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Particle physics: Probabilistic model to describe 
the world we live in.

data SM
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p(x |θ) =
1
σ ∫ dx |ℳ(x) |2



Machine Learning: Probabilistic model to describe 
the world we live in.

data Parameters

ϕ ← ϕ − λ∇ϕℒ
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Machine Learning: Probabilistic model to describe 
the world we live in.

data Parameters

ϕ ← ϕ − λ∇ϕℒ
3

ℒoss
( −log p(x |ϕ) )

ϕ

Data drives discoveries
p(x |ϕ)



High fidelity 
MC simulations

Probabilistic reconstruction

W / Z 
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top 
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Higgs 
2012

B-factories 
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hep-ex/0408093

Phys. Rev. D 94, 
032004 (2016)

Cern Courrier; 
Discovery of the weak 
neutral currents

Nature 560 
(2018)  
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BDTs for Higgs discovery
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Machine Learning for particle physics

https://inspirehep.net/files/1ac529ff1067358cf06d2eb79bf2f3f6
https://arxiv.org/abs/1606.02814
https://arxiv.org/abs/1606.02814
http://www.apple.com
https://web.archive.org/web/20170307052419/http://cerncourier.com/cws/article/cern/29168/
https://web.archive.org/web/20170307052419/http://cerncourier.com/cws/article/cern/29168/
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https://www.nature.com/articles/s41586-018-0361-2
https://www.nature.com/articles/s41586-018-0361-2
https://arxiv.org/abs/1207.7235
https://arxiv.org/abs/1207.7235
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Machine Learning for particle physics

What’s 
next??⋯

https://inspirehep.net/files/1ac529ff1067358cf06d2eb79bf2f3f6
https://arxiv.org/abs/1606.02814
https://arxiv.org/abs/1606.02814
http://www.apple.com
https://web.archive.org/web/20170307052419/http://cerncourier.com/cws/article/cern/29168/
https://web.archive.org/web/20170307052419/http://cerncourier.com/cws/article/cern/29168/
https://web.archive.org/web/20170307052419/http://cerncourier.com/cws/article/cern/29168/
https://www.nature.com/articles/s41586-018-0361-2
https://www.nature.com/articles/s41586-018-0361-2
https://arxiv.org/abs/1207.7235
https://arxiv.org/abs/1207.7235


article article

Slide design from L. Heinrich

5

https://www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html
https://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html


CVPR’17 video; as taken from Stanford CS231n course

Networks get deep with 
CNNs; RNNs; graph 
networks; transformers
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https://www.youtube.com/watch?v=POqBiiLaslk
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Big science, big data

https://a3d3.ai/about/

2010 2015 2020 2025

390 fb-1

Time

Integrated 
Lumi [fb-1]

575 fb-1

ATLAS

Belle-II

ATLAS: Run 3, HL-LHC 
Belle-II lumi
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https://a3d3.ai/about/
http://www.apple.com
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3
https://project-hl-lhc-industry.web.cern.ch/content/project-schedule
https://www.belle2.org/research/luminosity


theorydata
θ

x

Simulation
Generation / Forward modelling

44m

25m

Muonchambers

Tilecalorimeters

LArhadronicend-capand
forwardcalorimeters

Pixeldetector

Toroidmagnets Arelectromagneticcalorimeters

Solenoidmagnet Transitionradiationtracker

Semiconductortracker

High dimension 𝒪(108)

p( x | θ )

Slide adapted from K. Cranmer
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1) ML for our tools

2) ML for our future
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1) ML for our tools

2) ML for our future

• Jet tagging 
• Denisty ratio estimation 
• Generative networks
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😍

1005.5254

Eur. Phys Journal C 
Vol 73 3 (2013) 2304

https://arxiv.org/pdf/1005.5254.pdf


Simulation Reconstruction
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Deep learning for HEP
CNNs (2015) 

RNNs (2017) 

Deep Sets / Graphs (2018) 

Transformers (2020)



Jet tagging: multi-task learning!
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ℒtot = ℒjet ℒtrk ℒvtx+α +β

transformer
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Set-to-graph: 2002.08772 
ATL-PHYS-PUB-2022-027 
S. Stroud’s GN* seminar

Graph-net based flavour tagger

https://arxiv.org/abs/2002.08772
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
https://indico.cern.ch/event/1232499/
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Vertex finding
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Primary vertex

Group tracks with pair-wise compatibility > 0.5

From the B-
decay vertex

From tertiary D-
decay vertex

FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


FTAG-2023-01

First deep learning 
application transforming 
ATLAS physics analyes

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


FTAG-2023-01

First deep learning 
application transforming 
ATLAS physics analyes

Transformer-based tagger 
 more training jets [300m 😱]𝒪(10)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


More data, less physics
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transformer
The more data we add, the less phyiscs inductive biases help.

ℒtot = ℒjet ℒtrk ℒvtx+α +β
GN1 (2021): helped a lot 
• 30m training jets 
• 100% improvement 
        ATL-PHYS-PUB-2022-027

GN2 (2023): help a little 
• 300m training jets 
• 15% improvement 
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https://arxiv.org/abs/2505.19689
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/


Classify b-jets

light 
(ud,s,gluon)

c

b

GN2
17



Classify other jets

g

q

Classify b-jets

light 
(ud,s,gluon)
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b

GN2
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Muon spectrometer

g

s

c

b

u/d

GN3: multi-modal, multi-task

2x decrease in bkg mistag rate 😱
FTAG-2025-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2025-01/


Density ratio intro
Density ratios

Generalizes the ratio of two histograms to high dimensions

Neural density ratio estimationHistograms

A
B

mX

E
nt

rie
s

A 
/ B

pA(x)

pB(x)
NNΘ(x) = ,    x ∈ ℝd

Loss: binary cross entropy

ℒ = − ∑ log NNθ(xi) − ∑ log (1 − NNθ(xi))
xi ∈  A xi ∈ B

⇒



Background estimation

20

mH1

mH2

4b

2b

B D

CA

4b-tags

2b-tags
Mass 

sideband
Signal 
region

Train Apply

blinded SR

g

g H

H

X

H

b

b
b

b
H

Example

            Generalized ABCD method

mHH [GeV] mHH [GeV]

NN rw

Density ratios

Key assumption: 

wCR(x) is a valid ≈ of wSR(x).

p4b = w(x) ⋅ p2b(x)

1911.00405 
2202.07288 
2301.03212 

https://arxiv.org/abs/1911.00405
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-41/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/


Wide spread adoption

21

Density ratios

+ others!

HH4b + MET 
BDT rw 1806.04030 and 
ATLAS-CONF-2023-048

�

�

�

�

�

��

��

��

1
RU
P
DO
L]
HG
�(
QW
ULH
V �Hಜ�

ЭV  ���7H9����IEಜ�
3UHOLPLQDU\$7/$6

=�-HWV�XQZHLJKWHG
=�-HWV�UHZHLJKWHG
'DWD�����

� �� ��� ��� ��� ��� ���

PMM

���

���

5D
WLR

7R
�'
DW
D

FTAG truth -> reco  
ATL-PHYS-PUB-2022-041
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Higgs boson reconstruction (resolved)

CMS 
Jet pairing based on mH1-mH2 plane information

ATLAS 
The challenge: Four b-jet candidates→ 3 pairing possibilities 

pT(H1) > pT (H2) d1 < d2  <  d3
k=125/120=1.04

If |d1-d2| ≥ 30 GeV:
     d1  (closest to diagonal)
Otherwise: 
    d1 or d2 maximizing pT(H) in 4-jet frame

Very good performance (e.g. 96% accurate for SM ggF) 
Maximizing signal collection w/o bkg. sculpting near the mH 

SM ggF Data

Chosen pair

Choose pairing that minimizes ΔR distance  

between jets in the leading Higgs candidate (H1)
90% accurate for SM ggF events 

where 4 b-jets = 4 b-quarks from Higgs decays

                                                          ATLAS+CMS Non-resonant bbbb 

CMS HH4b NR 
BDT rw: 2202.09617 +  
Higgs Pairs 2022 talk

Y -> XH 2306.03637 
NN rw for anomalous jets

gg tagger  
Match MC -> data 

ATL-PHYS-PUB-2021-027

VH(qqbb) 
BDT 2007.05293

Search for generic resonances 
MC -> data reweighting in sideband 

2502.09770 

mH [GeV]

DH(bb)

NN 
rw

Autoencoder Fundamentals

● Train on non-anomalous examples, 
learns to reconstruct input

● Force information through a bottleneck
○ Focus on core features of normal 

examples

  → Fails at reconstructing exotic examples
Illustrations: J Gonski, A Kahn

training examples

unknown examples

17

reconstruction loss

Unfolding Z+jets  
2405.20041; Mariel’s talk

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2017-02/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-048/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-041/
https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-005/
https://indico.cern.ch/event/1001391/contributions/4825903/attachments/2453106/4203918/HH4bTalk_May31_2022.pdf
https://arxiv.org/pdf/2306.03637.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-027/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-11/
https://cds.cern.ch/record/2924338/files/2502.09770.pdf
https://arxiv.org/abs/2405.20041
https://indico.cern.ch/event/1526677/contributions/6530983/attachments/3120827/5534102/Google%20slides.pdf#page=21


       Simulation-based inference
Density ratios

ΓH ∼
σoff−shell

σon−shell

Poff−shell(μ) = μPS + μPI + PB

Signal Background

p(x |μ)
p′￼(x)

=
1

σ(μ) (μσs
pS(x)
p′￼(x)

+ μσI
pI(x)
p′￼(x)

+ σB
pB(x)
p′￼(x) )

Neural Networks

Method 2412.01600  
result 2412.01548

Kinemmatics depend on … optimal classifier 
changes for each .

μ
μ

Backup

https://arxiv.org/pdf/2412.01600
https://arxiv.org/abs/2412.01548
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ϕL

https://lilianweng.github.io/posts/2018-10-13-flow-models/
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Learn pϕ( x | y )
Normalizing 

flow

blog post

fθ1
(z0) fθi

(zi−1) fθi+1
(zi)

=

pT,1
pT,2
η1
η2

Δϕ12

Gaussian,

e.g, z ∈ ℝ5

Sample generation

Training
f −1
ϕ = f −1

ϕ1
∘ f −1

ϕ2
∘ ⋯ ∘ f −1

ϕL

y

ℒoss = − log pϕ(x |y) = − log pz( f −1
ϕ (x |y)) −

K

∑
i=1

∂f −1
ϕi

∂zT
i

y y
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https://lilianweng.github.io/posts/2018-10-13-flow-models/


Learn pϕ( x | y )y
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https://cds.cern.ch/record/2878542


Bkg estimation (when we don’t trust QCD simulation)
Normalizing 

flow

Shape
Based on a flow:

 simtt̄  +QCD datatt̄

First public result with LHC 
data using flows!

Learn how to 
interpolate into the SR

• CMS 4 tops evidence (2023), M. Quinnan’s ML4Jets slides 

• ATLAS genric search, 2502.09770 
• CMS genric search, 2412.03747, seminar

Methods / pheno papers [1], [2]

https://arxiv.org/abs/1906.10831
https://arxiv.org/abs/2008.03636
https://arxiv.org/abs/2303.03864
https://indico.cern.ch/event/1526677/contributions/6530945/attachments/3120762/5533979/ml4jets_abcdnn.pdf
https://cds.cern.ch/record/2924338/files/2502.09770.pdf
https://arxiv.org/abs/2412.03747
https://indico.cern.ch/event/1392054/attachments/2823468/4931436/CERN_DS_Seminar-CMS_EXO_22_026-BM.pdf
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Simulation ATLAS H ➜ yy

GEANT4 most $$$ part of the simulation

2306.11379

LHCC-G-182

Flow to estimate 
the  backgroundγγ

PredictCondition
Truth kinematics Detector response

γ1

γ2

pT 
η 
φ

pT 
η 
φ

Flow

𝛿pT 
𝛿η 
𝛿φ
𝛿pT 
𝛿η 
𝛿φ

Number of interactions / bunch crossing, μ

MC sample size
GEANT4 1.3 ab-1

Flow 3.5 ab-1
2.7x more 

effective stats!

Normalizing 

flow

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2022-12/
https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf
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Simulation CMS “flash sim”

GEANT4 most $$$ part of the simulation
Normalizing 

flow

(HH4b)

flashSim
slides

https://cds.cern.ch/record/2858890
https://docs.google.com/presentation/d/1W09i8ZFa0QdK5J4o5jD0oDJgWvpS7yw1nUnpQ0GFTM4/edit?slide=id.g31415f2a113_0_0#slide=id.g31415f2a113_0_0


1) ML for our tools

2) ML for our future
• Foundation Models 
• Reconstruction = HEP foundation model 
• End-to-end analysis  
• Self supervised learning 
• Incorporating domain expertise

29



Computer vision

Natural language

pϕ(x |y)
promptanswer

yx

2204.06125



2108.07258

“From a technological point of view, foundation models are not new… however, 
the sheer scale and scope of foundation models from the last few years have 
stretched our imagination of what is possible.”

2000s 2010s 2020s

https://arxiv.org/abs/2108.07258


2005.14165

Setting
LAMBADA

(acc)
LAMBADA

(ppl)
StoryCloze

(acc)
HellaSwag

(acc)

SOTA 68.0a 8.63b 91.8c 85.6d

GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two difficult completion prediction datasets. a[Tur20] b[RWC+19] c[LDL19]
d[LCH+20]

Figure 3.2: On LAMBADA, the few-shot capability of language models results in a strong boost to accuracy. GPT-3
2.7B outperforms the SOTA 17B parameter Turing-NLG [Tur20] in this setting, and GPT-3 175B advances the state of
the art by 18%. Note zero-shot uses a different format from one-shot and few-shot as described in the text.

and [Tur20]) and argue that “continuing to expand hardware and data sizes by orders of magnitude is not the path
forward”. We find that path is still promising and in a zero-shot setting GPT-3 achieves 76% on LAMBADA, a gain of
8% over the previous state of the art.

LAMBADA is also a demonstration of the flexibility of few-shot learning as it provides a way to address a problem that
classically occurs with this dataset. Although the completion in LAMBADA is always the last word in a sentence, a
standard language model has no way of knowing this detail. It thus assigns probability not only to the correct ending but
also to other valid continuations of the paragraph. This problem has been partially addressed in the past with stop-word
filters [RWC+19] (which ban “continuation” words). The few-shot setting instead allows us to “frame” the task as a
cloze-test and allows the language model to infer from examples that a completion of exactly one word is desired. We
use the following fill-in-the-blank format:

Alice was friends with Bob. Alice went to visit her friend . ! Bob

George bought some baseball equipment, a ball, a glove, and a . !
When presented with examples formatted this way, GPT-3 achieves 86.4% accuracy in the few-shot setting, an increase
of over 18% from the previous state-of-the-art. We observe that few-shot performance improves strongly with model
size. While this setting decreases the performance of the smallest model by almost 20%, for GPT-3 it improves accuracy
by 10%. Finally, the fill-in-blank method is not effective one-shot, where it always performs worse than the zero-shot
setting. Perhaps this is because all models still require several examples to recognize the pattern.

12

GPT3, Fig 3.2

Generative 
Pre 
Training

GN2 (2m) GN3 (13m)

Comparing w/ size of 
SOTA jet tagging models

20252023 GPT4 

1.8T param

32

https://arxiv.org/abs/2005.14165


“A foundation model is any model that is trained on broad data 
(generally self-supervision at scale) that can be adapted (e.g, fine-tuned) 
to a wide range of downstream tasks.”

2108.07258

https://arxiv.org/abs/2108.07258
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HEP reconstruction optimized on broad data



Analysis

HEP reconstruction is trained on broad data
that can be adapted (e.g, optimize working 
points) to a wide range of downstream 
analyses.

Classifier efficiency 
operating points

Tight / loose

Reconstruction

Each of analysis chooses their own 
operating points (grad student descent).



Analysis

HEP reconstruction is trained on broad data
that can be adapted (e.g, optimize working 
points) to a wide range of downstream 
analyses.
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In this work we demonstrate that significant gains in performance and data efficiency can be achieved
in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization
or reconstruction and analysis components. We conceptually connect HEP reconstruction and
analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation
and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of
heavy resonances decaying via an intermediate di-Higgs system to four b-jets.

I. INTRODUCTION

Data analysis in High Energy Physics (HEP) aims to
make inferences on fundamental theories of nature based
on data recorded at large-scale experiments, such as those
at the Large Hadron Collider (LHC). The observed data
at such experiments originates from high energy collisions
and their evolution is modeled by a deep hierarchy of
physical models, describing e.g. the decay of particles,
their subsequent radiation patterns and finally the in-
teractions with the detecting instrument. Consequently,
the primary approach in data analysis is that of hierar-
chical pattern recognition and inference: first, low-level
patterns in the detector data are identified and used to
reconstruct properties of particles that directly interacted
with the detector. Based on these, the earlier stages of
the data-generating process are reconstructed in a hierar-
chical fashion before inferences on the originating theory
can finally be made. That is, the inference pipeline aims
to approximately invert the data-generating process by
progressively summarizing the data, reconstructing earlier
latent states and subsequently analyzing those. Tradition-
ally, the individual reconstruction and analysis algorithms
are optimized sequentially (greedily), with late-stage algo-
rithms being optimized on inputs of previously optimized
earlier stages. While practical, it is unlikely that this
strategy would yield the jointly optimal data analysis
pipeline.

In this work, we show that significant gains in perfor-
mance and data efficiency can be achieved by instead pur-
suing a more global gradient-based optimization strategy
and modelling the data analysis approach after modern
large-scale machine learning (ML) workflows with founda-
tion models. As shown in Figure 1 these gains materialize
as boosted performance at a fixed dataset size as well as
an improved data efficiency, i.e. samples required to reach
a desired level of performance. This paper is outlined as
follows: In Section II we review relevant related work. In
Section III we recall preliminaries from simulation-based
inference and point out similarities between machine-
learning with foundation models and common practice in
particle physics. Section IV introduces a demonstrator
use-case for end-to-end optimization and discusses the
datasets involved, whereas Section V discusses the neural
network architectures and training strategies considered

FIG. 1: Strategies from modern machine learning such as
finetuning, large-scale pretraining, finetuning, domain
adaptation and high-dimensional embeddings (green

curves) can lead to significant performance gains over the
traditional HEP approach, denoted here as

S+HLF(frozen). Top: Performance evolution as a
function of training dataset size. Bottom: Final

Performance at 10M training samples.

in the study. In Section VI we discuss the results while
giving an outlook towards future research directions in
Section VII. Our main contributions are:

• We establish a correspondence between concepts in
the HEP analysis workflow and those in modern
deep learning such as foundation models, down-
stream tasks and finetuning to describe a general
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FIG. 5: The QCD rejection at 50% top-jet efficiency
evaluated on (left) the RODEM test set and (right) the
JetClass test set, as a function of the size of the RODEM
data set used for fine-tuning. All models are pre-trained

on JetClass. The average and standard deviation of
rejection over 5 trainings is shown in solid lines and

uncertainty bands, respectively.

classifiers performance on separating pure datasets of each
class (QCD vs top jets). In Fig. 6, we show the significance
improvement, defined as the ratio of significance before
and after applying a threshold of 0.5 on the classifier
output. The significance is defined as the number of signal
class events divided by the square root of the number of
background class events that pass a given threshold. Note
that ground truth labels are used in the evaluation metric,
but not in the fine-tuning procedure. Any value of this
metric below 2 is not considered to be particularly useful.
We can see that the pre-trained backbone is highly useful
for this task, significantly improving the performance of
the model that is trained from scratch, even when only
the linear head is fine-tuned.

The idea of noisy labels is useful in practice for data
driven weakly supervised search strategies [52–58]. In
particular, it has recently been demonstrated that these
data driven techniques can be extended to constituent
level representations of the jet [59, 60] where the pre-
training we propose here will be of significant benefit. It
has also been shown to be successful for isolating muons
using data directly [61].

VI. CONCLUSIONS

In this paper we propose the masked particle modelling
strategy for pre-training models on unordered sets of in-
puts, and demonstrate that it is useful in the context
of high energy physics. Both the continuous nature of
particle features, as opposed to the discrete vocabulary
typical of natural language, and the unordered nature
of the data, as opposed to the sequential nature of text,
are addressed to adapt masking strategies from natural
language and computer vision to unordered sets of in-
puts, as is found in high energy physics data. When
pre-training with the masked particle modeling strategy,
we show that fine-tuned models can achieve high perfor-
mance on downstream tasks, even using small fine-tuning

FIG. 6: Models trained with weak supervision to classify
data sets of different label proportions. A data set of one

million QCD jets is compared to a data set with one
million QCD jets plus N top jets. The average and

standard deviation of the significant improvement over 5
trainings is shown in solid lines and uncertainty bands,

respectively.

data sets. These pre-trained models can be fine-tuned to
discriminate classes which have not been seen during pre-
training, can be adapt to new data sets, and show strong
performance in weakly supervised settings. We explore
the intriguing possibility to pre-train such models directly
on experimental data, whilst only using simulations for
fine-tuning. Such an approach may help mitigate uncer-
tainties owing to the small distribution shifts between
simulated and real data. Initial studies are promising,
indicating that further examination of increasing the scale
and size of pre-training data sets and backbone model
may help overcome such domain adaptation challenges.
More generally, this work suggests that continued explo-
ration of self-supervised learning strategies for high energy
physics data, coupled with increased data set and model
sizes is a promising direction for the future development
of machine learning in high energy physics.
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FIG. 1: The proposed model and training scheme for a FM for jets. A jet is represented as a set of particles, each a
list of features, and some particles are replaced by masked tokens and passed through a transformer encoder. Training
aims to predict the discrete token identity, defined by the encoder of a pre-trained VQ-VAE, of the masked particles.

II. RELATED WORK

Foundation models, such as Masked Language Models
(BART [2], BERT [3]), Generative Pre-trained Trans-
former (GPT) [4, 5], Vision Transformer (ViT) [6],
DINO [7] and their combinations, such as DALLE [9],
Flamingo [10] and others have primarily been explored
in the domains of language and vision. We refer readers
to the recent review [1] for an overview. Most closely re-
lated to this work is the BERT model [3], which uses the
masking and prediction of missing words as a pre-training
task, and the BEiT model [8], which adapts the masked
language modeling method to images by masking and
predicting patches of input images. On masked modeling
schemes for data which consists of unorderd sets of inputs,
the impact of removing positional information in masked
image modeling was examined in Ref. [11], and using posi-
tion as a target when processing unordered image patches
was explored in Ref. [12]. The first steps in developing
foundation models for science have been developed in e.g.
protein biology [13], molecular chemistry [14, 15], and
cosmology [16, 17], showing their ability to learn informa-
tive representations that are useful in these domains for
various downstream tasks.

The first steps in self-supervised learning on jets was
explored in Refs. [18–20], largely focusing on contrastive
pre-training using augmentations of jets. Supervised pre-
training strategies have also been explored in Ref. [21].
Transformer models were trained on large jet datasets for
classification in a supervised setting in Ref. [22, 23] and
several transformer-based applications have since been

developed (for example, see Refs. [24–31]). Transformers
have also been used for auto-regressive density estimation
and jet classification [32, 33]. Notably, Ref. [32] also
explored the discretization of continuous particle features
to form jet sequences, which we examine in this work.

In parallel to the present effort on self-supervised foun-
dation models, investigations are ongoing on the potential
of supervised FMs in HEP by using physics-motivated
pretext tasks followed by fine-tuning in a hierarchical
setting [34].

III. OVERVIEW OF METHODS

The proposed model and training scheme is summarized
in Fig. 1. In line with the MLM framework employed by
BERT [3], the MPM objective described in Section III A
involves selecting a subset of particles within each jet to
form the masked set. A predefined masking strategy is
applied to this subset. The goal of MPM is to build a
model capable of inferring the attributes of the original
particles within the masked set, using information from
all other particles present in the jet. As particles form
unordered sets, in contrast to the sequential nature of
sentences, we develop a masked prediction scheme which
is applicable for unordered set-based data. An additional
challenge stems from the continuous nature of particle
features, in contrast to the discrete dictionary found in
language models but similar to the challenges of masking
image patches in CV. In Section III B, we tackle this chal-
lenge employing methods akin to those used in BEiT [8].
We discuss the fine-tuning of the pre-trained model to

Pretrain Delphes 100m jets.

Ultimately… could be on ATLAS data!

Pre-train in an “unsupervised learning” setting, a.k.a, “generative model”

→ Jet completion

More self-supervised training 
proposals, see M. Kagan & A. Hallin

https://arxiv.org/abs/2401.13537
https://indico.cern.ch/event/1253794/contributions/5588564/attachments/2746940/4779937/MPM.pdf
https://indico.cern.ch/event/1297159/contributions/5729217/attachments/2789213/4863674/MPM_IML_Talk.pdf
https://indico.cern.ch/event/1459124/contributions/6150087/attachments/2938370/5162044/Kagan_FMworkshop_2024.pdf
https://indico.ph.tum.de/event/7906/contributions/10714/attachments/6920/9623/Foundation_models_for_HEP_Anna_Hallin.pdf


K. Terao slide 
2502.02558

40

Also in neutrino physics (DUNE)

https://docs.google.com/presentation/d/1A6RMXXNE5A410XVBYMonW8Y0OGv3jPZULEpVF2KoWug/edit?slide=id.g3644502a531_0_5153#slide=id.g3644502a531_0_5153
https://arxiv.org/abs/2502.02558


What does this enable? 
Phys. Rev. D 111, 092015 (2025)

➜ Sharing reconstruction across experiments

Particle flow 
backbone 

model

CLIC full sim

CLD full sim

CLIC full sim

CLD full sim

41

ML algorithm 
outperforms baseline 

with 10x fewer samples.

Particle Flow

(baseline non-ML)

https://arxiv.org/pdf/2503.00131


What does this enable? 
Phys. Rev. D 111, 092015 (2025)

➜ Sharing reconstruction across experiments

Particle flow 
backbone 

model

CLIC full sim

CLD full sim

CLIC full sim

CLD full sim

Could we share a 
reconstruction 

backbone across 
ATLAS and Belle II?

41

ML algorithm 
outperforms baseline 

with 10x fewer samples.

Particle Flow

(baseline non-ML)

https://arxiv.org/pdf/2503.00131


The Q: Build big or build smart?

https://www.munich-iapbp.de/activities/activities-2025/machine-learning

Workshop ongoing in Munich, 25.8 — 19.9

https://www.munich-iapbp.de/activities/activities-2025/machine-learning
http://www.apple.com
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https://arxiv.org/abs/2310.12804
https://indico.cern.ch/event/1297159/contributions/5729183/attachments/2789640/4864511/IML_30Jan2024_NDIVE.pdf
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FIG. 6: Median difference between the fit and true vertex x-coordinate divided by the square root of the fit variance
per-track, for b-jets, in bins of jet pT , track multiplicity, and hadron decay length. The boxes indicate the interquartile
range (IQR) of the distributions and the error bars cover data points that fall within 1.5 times the IQR from the box.

FIG. 7: Light-jet and c-jet rejection as a function of
b-tagging efficiency for the flavour tagging models in the
baseline architecture and with NDIVE integration. The
error bars are the standard deviation of 5 trainings.

VI. CONCLUSION

In this work, we introduce a new strategy to integrate
vertex fitting algorithms into neural networks with differ-
entiable programming. To do so, we make use of methods
in differentiable optimization to enable differentiation
through the optimization that defines the vertex fit.

Using these techniques, we introduce the differentiable
vertex fitting algorithm NDIVE that is capable of finding
and fitting secondary vertices in both b- and c-jets and
can readily be integrated and jointly optimized in a larger
flavour tagging neural network model. We have developed
one possible flavour tagging model that integrates vertex
fitting, FTAG+NDIVE, and show that considerable improve-
ments in light-jet and c-jet rejection are possible when
vertex fitting is used in neural flavour tagging models.

These methodological developments are generic, appli-

FIG. 8: Light-jet and c-jet rejection as a function of
b-tagging efficiency for the flavour tagging models in the
baseline architecture and with NDIVE integration using a
perfect track selection assignment. The error bars are

the standard deviation of 5 trainings.

cable to other vertex fitting algorithms and other schemes
for integrating vertex information into neural networks.
The ultimate quality of a vertex-integrated model will
depend on the vertex finding and fitting quality, and how
the information is integrated into a larger flavour tagging
model. As such, the models presented in this work repre-
sent one choice of how to use differentiable vertex fitting
in neural flavour tagging models, but also show that large
future improvements are possible. Increases in data set
sizes, and consequently increases in transformer size for
both the weight prediction and track processing modules,
will also likely significantly improve model performance
and are important directions of future work. Ultimately,
we believe that using the differentiable vertex fitting strat-
egy described here can lead to a highly fruitful future of
continued improvement to neural flavour tagging models.

light-jet rejection
c-jet rejection
transformer
transformer+NDIVE

⬅︎ 50% improvement in bkg rejection 

( Up to 10x improvement 😱 in jet tagging 
from vtx fit if perfect track selection )   

43

https://arxiv.org/abs/2310.12804
https://indico.cern.ch/event/1297159/contributions/5729183/attachments/2789640/4864511/IML_30Jan2024_NDIVE.pdf
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VI. CONCLUSION

In this work, we introduce a new strategy to integrate
vertex fitting algorithms into neural networks with differ-
entiable programming. To do so, we make use of methods
in differentiable optimization to enable differentiation
through the optimization that defines the vertex fit.

Using these techniques, we introduce the differentiable
vertex fitting algorithm NDIVE that is capable of finding
and fitting secondary vertices in both b- and c-jets and
can readily be integrated and jointly optimized in a larger
flavour tagging neural network model. We have developed
one possible flavour tagging model that integrates vertex
fitting, FTAG+NDIVE, and show that considerable improve-
ments in light-jet and c-jet rejection are possible when
vertex fitting is used in neural flavour tagging models.

These methodological developments are generic, appli-

FIG. 8: Light-jet and c-jet rejection as a function of
b-tagging efficiency for the flavour tagging models in the
baseline architecture and with NDIVE integration using a
perfect track selection assignment. The error bars are

the standard deviation of 5 trainings.

cable to other vertex fitting algorithms and other schemes
for integrating vertex information into neural networks.
The ultimate quality of a vertex-integrated model will
depend on the vertex finding and fitting quality, and how
the information is integrated into a larger flavour tagging
model. As such, the models presented in this work repre-
sent one choice of how to use differentiable vertex fitting
in neural flavour tagging models, but also show that large
future improvements are possible. Increases in data set
sizes, and consequently increases in transformer size for
both the weight prediction and track processing modules,
will also likely significantly improve model performance
and are important directions of future work. Ultimately,
we believe that using the differentiable vertex fitting strat-
egy described here can lead to a highly fruitful future of
continued improvement to neural flavour tagging models.

light-jet rejection
c-jet rejection
transformer
transformer+NDIVE

⬅︎ 50% improvement in bkg rejection 

( Up to 10x improvement 😱 in jet tagging 
from vtx fit if perfect track selection )   

Interesting for Belle 2? 1808.10567 
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https://arxiv.org/abs/2310.12804
https://indico.cern.ch/event/1297159/contributions/5729183/attachments/2789640/4864511/IML_30Jan2024_NDIVE.pdf
https://arxiv.org/abs/1808.10567
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How to use gradients MORE?

✅ ✅ ✅

Clustering not differentiable… how to fully 
exploint the richness of our high dim data 
( tracks / hits 📸 ).

❌

W/ A. Kofler, M. Kagan and L. Heinrich, in prep



How to see a Higgs: wearing the right 
glasses

b

b

ℓ
ℓ = e, μ

ℓ

Madgraph + pythia, pp collisions @ 14 TeV

With A. Kofler, M. Kagan and L. Heinrich, in prep

125 GeV



Differentiating clustering

Step 1: Interpret clustering decision probabilistically
Qanti-kT, M. Schwartz + collab: 1201.1914, 1304.2394

Deterministic  
Merge closest two particles

Probailistic  
Sample which particles to merge

Edge weights show 
merging probability

y

ɸ

y

ɸ
Merge 

these two!

Most likely 
merge!

With A. Kofler, M. Kagan and L. Heinrich, in prep

https://arxiv.org/abs/1201.1914
https://arxiv.org/abs/1304.2394


Differentiating clustering

Step 1: Interpret clustering decision probabilistically

As in 2308.16680

= 𝔼x∼p(θ)[ f(x)∇θlog p(θ)]

47

Step 2: Gradient with score based estimate

With A. Kofler, M. Kagan and L. Heinrich, in prep

∇θ𝔼x∼p(θ)[ f(x)]

https://arxiv.org/abs/2308.16680


Differentiating clustering

Step 1: Interpret clustering decision probabilistically

48

Step 3: Gradient based opt for 
clustering radius parameter

Step 2: Gradient with score based estimate

Optimization step
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With A. Kofler, M. Kagan and L. Heinrich, in prep



Differentiating clustering

Step 1: Interpret clustering decision probabilistically

48

Step 3: Gradient based opt for 
clustering radius parameter

Step 2: Gradient with score based estimate

Optimal radius  
R = 0.65

Optimization step

Je
t r

ad
iu

s

With A. Kofler, M. Kagan and L. Heinrich, in prep



pp→ZH→llbb, 14 TeV

Optimized radius 
(gradient descent) Initial radius 

R=1

mH [GeV]
With A. Kofler, M. Kagan and L. Heinrich, in prep



pp→ZH→llbb, 14 TeV

Optimized radius 
(gradient descent) Initial radius 

R=1

Optimal radius 
for each event

mH [GeV]
With A. Kofler, M. Kagan and L. Heinrich, in prep



∇

Promising for end-to-end models… 
holy grail for physics data anlaysis!

pp→ZH→llbb, 14 TeV

Optimized radius 
(gradient descent) Initial radius 

R=1

Optimal radius 
for each event

mH [GeV]
With A. Kofler, M. Kagan and L. Heinrich, in prep



Particle Flow 
Objects

Tracking Energy 
Clusters

p(z1 |θ)

p(z3 |z2)

p(x |z3)

q

g

H
tt

W

ℓ
νℓ

b b

W

b

b

q

g

p(z1 |θ)

q

tagged jets

b

Jets

In conclusion…

50



Particle Flow 
Objects

Tracking Energy 
Clusters

p(z1 |θ)

p(z3 |z2)

p(x |z3)

q

g

H
tt

W

ℓ
νℓ

b b

W

b

b

q

g

p(z1 |θ)

q

tagged jets

b

Jets

b-tagging
more inputs;  
bigger model, better perf

In conclusion…

50



Particle Flow 
Objects

Tracking Energy 
Clusters

p(z1 |θ)

p(z3 |z2)

p(x |z3)

q

g

H
tt

W

ℓ
νℓ

b b

W

b

b

q

g

p(z1 |θ)

q

tagged jets

b

Jets

reweighting
flows

b-tagging
more inputs;  
bigger model, better perf

In conclusion…

50



Particle Flow 
Objects

Tracking Energy 
Clusters

p(z1 |θ)

p(z3 |z2)

p(x |z3)

q

g

H
tt

W

ℓ
νℓ

b b

W

b

b

q

g

p(z1 |θ)

q

tagged jets

b

Jets

reweighting
flows

∇ϕℒ

b-tagging
more inputs;  
bigger model, better perf

In conclusion…

50



Particle Flow 
Objects

Tracking Energy 
Clusters

p(z1 |θ)

p(z3 |z2)

p(x |z3)

q

g

H
tt

W

ℓ
νℓ

b b

W

b

b

q

g

p(z1 |θ)

q

tagged jets

b

Jets

reweighting
flows

∇ϕℒ

b-tagging
more inputs;  
bigger model, better perf

In conclusion…

50



Particle Flow 
Objects

Tracking Energy 
Clusters

p(z1 |θ)

p(z3 |z2)

p(x |z3)

q

g

H
tt

W

ℓ
νℓ

b b

W

b

b

q

g

p(z1 |θ)

q

tagged jets

b

Jets

reweighting
flows

∇θlog p(x; θ)

∇ϕℒ

b-tagging
more inputs;  
bigger model, better perf

In conclusion…

50



Particle Flow 
Objects

Tracking Energy 
Clusters

p(z1 |θ)

p(z3 |z2)

p(x |z3)

q

g

H
tt

W

ℓ
νℓ

b b

W

b

b

q

g

p(z1 |θ)

q

tagged jets

b

Jets

reweighting
flows

∇θlog p(x; θ)

∇ϕℒ

b-tagging
more inputs;  
bigger model, better perf

In conclusion…

50

Thanks!



Backup

51



Timeline
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ML

Physics

1997 2017

20232022202120202019

2018

RNN 
LSTM Transformers

Deep Sets 
1703.06114

Deep Sets 
1810.05165

RNNIP 
GNNs 

2008.02831
Transformers

1706.03762

Dynamic 
Graph CNN 
1902.08570

2018

Dynamic 
Graph CNN 
1801.07829

GNN review 
1806.01261

ParT 
2202.03772

GN2 
FTAG-2023-01

DIPS 
ATL-PHYS-PUB-2020-014

ATL-PHYS-
PUB-2017-003

https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/pdf/1703.06114
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/2008.02831
https://arxiv.org/abs/1706.03762
https://arxiv.org/pdf/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/pdf/1806.01261
https://arxiv.org/abs/2202.03772
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://cds.cern.ch/record/2718948
https://cds.cern.ch/record/2255226
https://cds.cern.ch/record/2255226
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Calibration
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FTAG-2023-04
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-04/


And… it translates to the physics (!)

55

2505.19689

https://arxiv.org/abs/2505.19689


And… it translates to the physics (!)

55

2505.19689

Physcics briefing

GN2 used in new  analysis (with 2022 — 2024 dataset)HH → bbγγ

https://arxiv.org/abs/2505.19689
https://atlas.cern/Updates/Briefing/Higgs-Self-Interaction-Run-3


56

2505.19689

Johannes Wagner’s trainings

(1) The auxiliary tasks 
guide the model to more 
optimal solutions

(2) Extra physics info 
helps more

GN3

https://arxiv.org/abs/2505.19689


GN3: Multi-task, multi-modal b-tagger
FTAG-2025-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2025-01/


GN3: Multi-task, multi-modal b-tagger
FTAG-2025-01
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A word of caution 

Rob Les slides 
2407.20127

Graph NN

Deep Set

Physics Constrained NN

CNNLarger 
uncertainties

Better tagger

https://agenda.infn.it/event/37093/contributions/234314/attachments/124117/182402/ATLAS_HadronicClassification.pdf
https://arxiv.org/abs/2407.20127


2019: The bitter lesson (Richard Sutton)

“The biggest lesson that can be read from 70 years of AI research is that 
general methods that leverage computation are ultimately the most 
effective, and by a large margin.”

BitterLesson

Exs:

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Dynamic Graph CNN
“ParticleNet” [CMS]

Huilin Qu’s slide 
Phys.Rev.D101(2020)5,056019

Model the jet as 
a point cloud X→YH→4b: CMS-B2G-21-003 

ggF/VBF HH(4b): CMS-B2G-22-003

61

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-003/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html


Dynamic Graph CNN
“ParticleNet” [CMS]

Huilin Qu’s slide 
Phys.Rev.D101(2020)5,056019

Model the jet as 
a point cloud X→YH→4b: CMS-B2G-21-003 

ggF/VBF HH(4b): CMS-B2G-22-003

VBF HH→4b
First analysis  

excluding κ2V = 0

ggF HH→4b

Boosted: 
Obs (exp): 9.9 (5.1) 

Resolved: 
Obs (exp): 5.4 (8.1) 
Obs (exp): 3.8 (7.8)

Very impressive physics results 
But was the graph representation needed?

61

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-003/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html


How did this story evolve for neutrino identification?

Quarks

Leptons

Forces



Also in jet tagging (ATLAS and CMS), transformers outperform GNN architectues.

competition

All three of the winning solutions 
used a transformer architecture.

2310.15674

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://arxiv.org/pdf/2310.15674


Simulation based inference

tμ = − 2 log
ℒ(μ)
ℒ( ̂μ)

= − 2
Nevt

∑
i=1

p(xi |μ)/p′￼(xi)
p(xi | ̂μ)/p′￼(xi)

tμ = − 2
Nevt

∑
i=1

p(xi |μ)
p(xi | ̂μ)

Traditionally, train MVA & histogram-ize

𝒪ggF
NN

E
nt

rie
s

Trick: don’t need NN(𝜇)

p(x |μ)
p′￼(x)

=
1

σ(μ) (μσs
pS(x)
p′￼(x)

+ μσI
pI(x)
p′￼(x)

+ σB
pB(x)
p′￼(x) )

 NN(𝜇)

Neural Networks

W/ interference, no single 
classifier is optimal  𝜇∀

Method 2412.01600  
result 2412.01548

https://arxiv.org/pdf/2412.01600
https://arxiv.org/abs/2412.01548
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Uncertainty on background model
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Flows for high dimensional interpolation

66 mH1 [GeV]

m
H

2 [
G

eV
]

p(x, mH1, mH2) =  p(x| mH1, mH2)  p(mH1, mH2)

Train 
here

Hierarchical 
model:

Use the smoothly 
varying (mH1, mH2) to 

predict SR kinematics.

x: Event kinematics 
pT,H1, pT,H2, ηH1, ηH2, ΔϕHH, XWt [top veto]

Normalizing flow Gaussian process

Evaluate  
here (SR)

Conceptually identical to CATHODE🧐

Thesis

NH thesis

https://cds.cern.ch/record/2878542


1) GP fits

67

Fit a GP to the 2d (mH1, mH2) histogram  
Radial basis function kernel, 2d length scale

OutputInput

p(x, mH1, mH2) =  p(x | mH1, mH2)  p(mH1, mH2)

Set the normalization from massplane fit:

�� �� �� � � � �
*3ಜREV0

REV

�

��

��

��

��

���

���

���

(Q
WU
LH
V�
���
��

$7/$6��,QWHUQDO
0
V � ����7H9�������IEಜ�

�E�65

�͐� ��������͗� �����
�͐� ��������͗� �����

n�65
65Thesis

Thesis Thesis Thesis

NH thesis

https://cds.cern.ch/record/2878542


Input processing: HH -> 4b background modeling 
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Azimuthal symmetry 
baked into the model

Constant ΔΦHH - will 
give the same mHH

Concerned about 
modeling b/c no way to 

know that -π → π.
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Input processing : HH -> 4b background modeling
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flow 
prediction

4b data 

Thesis

Good transformations help 
for complex distributions.

ΔϕHH

Thesis

NH thesis

https://cds.cern.ch/record/2878542


Input processing : HH → 4b background modeling
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Variable transformations
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Promising… better closure.

NH thesis
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Shifted regions
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mHH [GeV]

Thesis Thesis

ThesisThesis
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Probailistic reconstruction of two neutrinos
Normalizing 

flow

2207.00664 
2307.02405

mtt̄ [GeV]ΔR(ν, ν̄)

e+

μ

μ

e

Useful for Belle 2? 1808.10567 

https://arxiv.org/abs/2207.00664
https://arxiv.org/abs/2307.02405
https://arxiv.org/abs/1808.10567


Calibration… in a differentiable way

Idea: How do you have a mapping from 
pbMC ➞ pbdata 

Architecture: Normalizing flow with a constraint to 
ensure the transport map is minimal.

Malte Algren 

ATLAS-CONF-2024-014

https://indico.cern.ch/event/1387465/contributions/6019631/attachments/2924286/5133139/b_jet_calibration_using_optimal_transport_atlas_cms_WS.pdf
https://cds.cern.ch/record/2911642


ML HEP
Foundation Model Reconstruction

Backbone Reconstruction



ML HEP
Foundation Model Reconstruction

Reconstruction closurePretext tasks 
(next word prediction)

Backbone Reconstruction



ML HEP
Foundation Model Reconstruction

Reconstruction closurePretext tasks 
(next word prediction)

Backbone Reconstruction

Downstream head Analysis

HEAD ℒ Analysis ℒ



ML HEP
Foundation Model Reconstruction

Reconstruction closurePretext tasks 
(next word prediction)

Backbone Reconstruction

Finetuning Analysis specific 
reconstruction, e.g, operating points

∇ϕℒ∇ϕℒ

Downstream head Analysis

HEAD ℒ Analysis ℒ



ML HEP
Foundation Model Reconstruction

Reconstruction closurePretext tasks 
(next word prediction)

Object observables (jets)Embedding
Backbone Reconstruction

Finetuning Analysis specific 
reconstruction, e.g, operating points

∇ϕℒ∇ϕℒ

Downstream head Analysis

HEAD ℒ Analysis ℒ



Architecture

Xbb + HLF Vector + HLF Vector Only

Training 
strategies

Architecture Constraints

Training

Frozen

Finetuned

From Scratch

🧊🧊
Standard HEP

Inductive Bias 
is all you need

Hope for a 
Sufficient Statistic

“Hits to Higgs”

ML-assisted HEP



Architecture

Xbb + HLF Vector + HLF Vector Only

Training 
strategies

Architecture Constraints

Training

Frozen

Finetuned

From Scratch

🧊🧊
Standard HEP

Inductive Bias 
is all you need

Hope for a 
Sufficient Statistic

“Hits to Higgs”

ML-assisted HEP



Architecture

Xbb + HLF Vector + HLF Vector Only

Training 
strategies

Architecture Constraints

Training

Frozen

Finetuned

From Scratch

🧊🧊

Finetuned 
(JetClass init) ML-assisted HEP: better baseline

Standard HEP

Inductive Bias 
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How to build this HEP foundation model

M. Kagan’s slide 
& A. Hallin for up-to-date list

2401.13537 2409.12589

 2403.05618
2108.04253

2403.07066

https://indico.cern.ch/event/1459124/contributions/6150087/attachments/2938370/5162044/Kagan_FMworkshop_2024.pdf
https://indico.ph.tum.de/event/7906/contributions/10714/attachments/6920/9623/Foundation_models_for_HEP_Anna_Hallin.pdf
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2409.12589
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2403.07066


2310.12804; IML talk 
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FIG. 6: Median difference between the fit and true vertex x-coordinate divided by the square root of the fit variance
per-track, for b-jets, in bins of jet pT , track multiplicity, and hadron decay length. The boxes indicate the interquartile
range (IQR) of the distributions and the error bars cover data points that fall within 1.5 times the IQR from the box.

FIG. 7: Light-jet and c-jet rejection as a function of
b-tagging efficiency for the flavour tagging models in the
baseline architecture and with NDIVE integration. The
error bars are the standard deviation of 5 trainings.

VI. CONCLUSION

In this work, we introduce a new strategy to integrate
vertex fitting algorithms into neural networks with differ-
entiable programming. To do so, we make use of methods
in differentiable optimization to enable differentiation
through the optimization that defines the vertex fit.

Using these techniques, we introduce the differentiable
vertex fitting algorithm NDIVE that is capable of finding
and fitting secondary vertices in both b- and c-jets and
can readily be integrated and jointly optimized in a larger
flavour tagging neural network model. We have developed
one possible flavour tagging model that integrates vertex
fitting, FTAG+NDIVE, and show that considerable improve-
ments in light-jet and c-jet rejection are possible when
vertex fitting is used in neural flavour tagging models.

These methodological developments are generic, appli-

FIG. 8: Light-jet and c-jet rejection as a function of
b-tagging efficiency for the flavour tagging models in the
baseline architecture and with NDIVE integration using a
perfect track selection assignment. The error bars are

the standard deviation of 5 trainings.

cable to other vertex fitting algorithms and other schemes
for integrating vertex information into neural networks.
The ultimate quality of a vertex-integrated model will
depend on the vertex finding and fitting quality, and how
the information is integrated into a larger flavour tagging
model. As such, the models presented in this work repre-
sent one choice of how to use differentiable vertex fitting
in neural flavour tagging models, but also show that large
future improvements are possible. Increases in data set
sizes, and consequently increases in transformer size for
both the weight prediction and track processing modules,
will also likely significantly improve model performance
and are important directions of future work. Ultimately,
we believe that using the differentiable vertex fitting strat-
egy described here can lead to a highly fruitful future of
continued improvement to neural flavour tagging models.
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both the weight prediction and track processing modules,
will also likely significantly improve model performance
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Track 
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transformer

Track Params  
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Neural Differentiable Vertex Fitter

Inclusive secondary vertex 
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“Optimization in a loop”
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10x imp 😱

light-jet rejection
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transformer
transformer+NDIVE

Learned track selection Perfect track selection
light-jet rejection
c-jet rejection
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transformer+NDIVE

+ kinematic constraints in Belle-II

https://arxiv.org/abs/2310.12804
https://indico.cern.ch/event/1297159/contributions/5729183/attachments/2789640/4864511/IML_30Jan2024_NDIVE.pdf
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Differentiating clustering

Step 1: Interpret clustering decision probabilistically

As demonstrated by M. Kagan and L. Heinrich for 
particle interactions in material: 2308.16680

∇θ𝔼x∼p(θ)[ f(x)] = 𝔼x∼p(θ)[ f(x)∇θlog p(θ)]

∇R𝔼p(R)[mH] = 𝔼p(R)[mH ∇Rlog p(R)]

In general:

For jet clustering:

1 2 3 4 5 6

p(1)(1,2)
2

4

Particles “pseudo-jets”

p(2)(4,5)

p(3)(1,2)

p(4)(4,5)

p(5)(1,1)

p(6)(4,4)

🛑

🛑

1

4

Ex: sample i through event w/ 6 p’cles

m(i)
H

∇p(1)(1,2) +∇p(2)(4,5) +∇p(3)(1,2)

+∇p(4)(4,5) +∇p(5)(1,1) +∇p(6)(4,4)( ) 79

Step 2: Gradient with score based estimate

With A. Kofler, M. Kagan and L. Heinrich, in prep

https://arxiv.org/abs/2308.16680

