
Belle II Germany 2025

Upgrade of the Belle II First-Level Neural Track Trigger

Simon Hiesl Christian Kiesling Kai Unger Timo Forsthofer

PhD student LMU

09.09.2025

I New Track Finding by 3D-Hough Transforms
I Deep Neural Networks on FPGAs for Track Parameter Estimation
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Physical Motivation: z-Vertex Trigger

IP (green) and displaced (orange) tracks: Offline z-vertex reconstruction:

Data from 2019: Before z-trigger.

Only around 10-15% IP tracks! =⇒ z-vertex trigger mandatory
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The Central Drift Chamber (CDC) and Track Segment Finder (TSF)
3.2. Belle II Geometry

5 axial
super
layers

4 stereo
super
layers

≈16 cm≈ 1.2 m
z

≈2.4 m

axial layer

stereo layer

Figure 3.8.: Illustration of the alternating SL configuration in the CDC. Five axial SL
are inclined with four stereo SL with a twist w.r.t. the z-axis.

Central Drift Chamber - CDC

The Central Drift Chamber (CDC) is the main tracking device of Belle II [21, 56]. It
is a wire chamber containing 14336 sense wires oriented closely parallel to the z-axis
with 42240 field wires in between, creating a high voltage electric field. Charged
particles traversing the CDC volume ionize the gas molecules, where the volume is
filled with a special gas mixture of 50 % Helium and 50 % Ethan. The electric fields
accelerate the free electrons from the field wires towards the sense wires, where the
constant pressure in the gas admixture assures an almost constant drift velocity. In
contrast to a Geiger counter, a complete ionization of the gas is avoided by operating
the CDC at a lower voltage; only in the close vicinity of the sense wires, the electrons
pick up sufficient energy to ionize further gas molecules on their way. Due to this
so called Townsend avalanche [57], a measurable amount of electrons arrives at the
sense wires.

The drift time is the difference of the time of the measured signal at a sense wire
relative to the time of the initial ionization. Due to the almost constant drift velocity
of the electrons in the gas admixture, the drift time is an important distance measure
of a track to a wire. This xt-relation is illustrated in Fig. 3.9.

The sense wires are arranged in 56 layers, where six to eight neighboring layers
of sense wires with the same orientation are combined into nine Super Layers (SLs).
Five axial SLs (A) consisting of wires parallel to the z-axis, are inclined with four
stereo SLs of wires with different stereo angles with the z-axis (U, V). In short, the
orientation of the SLs is AUAVAUAVA [21]. Fig. 3.8 shows a sketch of the alternating
SLs and their orientation. The stereo angle ranges of the wires in the stereo SLs are
listed in Tab. 3.3. An illustration of the φ-shifted stereo wire mounting positions and
the relation to the stereo angle is illustrated in Chapter 5 in Fig. 5.6. These stereo
angles enable a 3D track reconstruction with the CDC. Further discussions on the
geometrical symmetry of the wires can be found in Sec. 5.2.3.

The innermost axial SL (A) contains eight axial layers, all other SLs contain six

45

I 14336 sense wire in 56
layers

I TS = Wire pattern from
track crossing

I TSF: Finds TS from
CDC hits

I 2336 TS in 9 SL

Crossing Track:
(a) Super Layer 0 (b) Super Layer 1-8

Hit

Priority

Miss

Example CDC Quadrant:

Institute for Information Processing Technologies (ITIV)

Integration into CDC Sub-Trigger System

9/15/20

Location in the Trigger system

Neuro z Trigger Status

sTSF

CDC
FEE

aTSF
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Current Level-1 Track Trigger: Track Finding Method
I Total latency ≈ 5µs =⇒ 3D Fitting not possible, requires:

I Current track finding method: 2D Hough Transformation
I Current classification method: Neural Network

60 5. 2D Track Finding

SL 0 SL 2 SL 4 SL 6 SL 8

ϕ0

1
r

Figure 5.7.: Left: Construction of the Hough matrix. The parameter space is covered
with a grid and the number of lines in each cell are counted. Lines from
the same superlayer are only counted once. Right: The Hough matrix as a
histogram. Cells above a given threshold are peak candidates.

a rising slope. The center of the cluster gives an approximation of the crossing point
and can be found by averaging the center coordinates of all cells in the cluster.

Note that the definition of a peak candidate is independent of the surrounding
cells. For example, for a peak threshold of four, a cell with lines from four different
superlayers is a peak candidate even if it is connected to a cell with five lines. This
allows to evaluate all cells in parallel to find peak candidates. To get only local
maxima it would be necessary to check not only direct connections, but also indirect
connections, like neighbors of neighbors. It turns out that the performance does not
improve enough to justify the additional complexity.

Figure 5.8.: Peak candidates are combined to a cluster if they are connected over a
cell edge or over the top right to bottom left corner. Left: The center cell is
connected to the six shaded cells. Right: Two clusters of peak candidates,
not connected to each other. The center of each cluster is marked with a
dot.

Institute for Information Processing Technologies (ITIV)

Integration into CDC Sub-Trigger System

9/15/20

Location in the Trigger system

Neuro z Trigger Status

2D

sTSF

CDC
FEE

aTSF

Track parameters:
φ and q/r = ω from
2DHough track

2D Track candidate: Axials only =⇒ Only 5 SLs for track finding, no z-information
I Requires 4 out of 5 axial track segments (ATS)
I Requires 3 out of 4 stereo track segments (STS), have to be found separately (by

statistical method through φ and drift time)
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Current Level-1 Track Trigger: The Neural Network
I z-Vertex and polar emission angle prediction with a neural network
I 2D track + Stereo TS =⇒ z and theta estimation
I Current Network: One hidden layer, 81 nodes
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Exp. 33

z-resolution
σ = 2.4 cm

acceptance cut:
|z| < 15 cm

(Data from 2024)
=⇒ z-cut of ±15 cm used
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The Single-Track-Trigger (STT)
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Figure 13: E�ciency of STT in comparison to the two-track triggers for the reaction
e+e ! µ+µ ( ) .

last row in fig. 8). Another “irreducible” component comes from the fact that the tracks554

at larger z tend to have smaller polar emission angles in order to traverse su�cient SLs555

of the CDC. The e↵ect of the reduced z-resolution for larger values of z can be seen556

in fig. 14. In this z-correlation plot between reco and neuro tracks one observes “feed-557

down” of the real tracks with large z-values into the z-acceptance interval of the neuro558

tracks. These additional neuro tracks, increasing the L1 track trigger rate, are clearly559

visible in the horizontal acceptance band for neuro tracks at ± 15 cm. In addition, fake560

neural tracks are produced, mainly by an increasing rate of 2D input track candidates,561

formed largely by random background hits. These fake 2D tracks have a fair chance to562

be combined with stereo track segments also originating from background sources. Our563

ongoing studies to improve the z-resolution for the entire z region (±100 cm) with the564

aim to significantly reduce the feed-down and fake tracks e↵ects is the subject of the565

next section.566
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Figure 14: Efficiency of STT in comparison to the two-track triggers for the reaction
e+e−→ µ+µ−(γ), as function of the smaller transverse momentum of the two tracks.

6 Ongoing Developments

We envisage several ways to stabilize the STT and the multi-track z-Trigger for future
running (clearly, we exclude the possibility to simply pre-scale the STT and lose physics).
Since new and more powerful custom-made trigger boards (“UT4”, equipped with Virtex
UltraScale 7 XCVU080/160 FPGAs) have become available to us recently for the z-
Trigger , more resources are now available to overcome the limitations of the presently
installed UT3 trigger boards. This means that the neural network architecture of the
z-Trigger , limited at the moment to one hidden layer with 81 nodes only, can now
be extended to a deep-learning network model, having typically three to four hidden
layers with O(100) nodes each. Furthermore, the track segment finders (aTSF and
sTFS, see fig. 6 above) will also provide information on all other wires within the TSs in
addition to the priority wire: This additional information consists of binary information
of the charge measured on the wires as well as the drift time , although with somewhat
reduced precision in the drift times (32 ns instead of 2 ns). Adding the information from

24

I The STT clearly outperforms the ≥2 track trigger
I Two trigger bits provided:

I At least one track within z-cut
I At least one track within z-cut and p ≥ 0.7 GeV
I (Published in “Nuclear Instruments and

Methods in Physics Research A 1073 (2025)
170279”, arXiv:2402.14962)

Single-Track-Trigger:
Activated if the track momentum
is above 0.7 GeV

p[GeV] =
1

ω[1/m] sin(θ) 0.3 B[T]
≥ 0.7 GeV

=⇒ Irreducible background from IP:
e+e− → e+e−e+e−
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Problems with the L1 Neural Network Trigger under High Backgrounds

I “Feed-Down” effect: Background tracks → Vertex tracks
I High number of 2D track candidates from the 2DTracker when the background is high

=⇒ Many Fake-Tracks using stereo background hits

7 / 20



Physical Motivation for New Trigger: Use all 9 Super Layers for Track Model

I Track Model: Axials and Stereos =⇒ 9 SL instead of 5
I Hence, more fake and background resistant
I Requires 3-dimensional Hough space, restricts vertex to (0, 0, 0)
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(Found single IP reconstructed tracks)

I Current polar acceptance:
I At least 4/5 axial SLs
I At least 3/4 stereo SLs

=⇒ Minimum 7/9 SLs
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Tracks with Shallow Polar Angles: Increased Polar Acceptance

I Extended (short track) super layer topology → Minimum 5/9 SLs
I At least 3/5 axial SLs
I At least 2/4 stereo SLs
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6.3. Neuro Trigger Setup
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Figure 6.8.: Sectorization of the phase space for tracks coming from the IP. (a) Sectors
in the signed transverse momentum q · pT, where q is the charge and pT
is proportional to the 2D track radius. (b) Longitudinal sectors in the 3D
track parameter θ.

networks were trained for missing input values. In the future, further specialization
of the neural networks can be considered. For example, neural networks can be
trained to recognize specific physics decay channels with a unique signature. Once
the signal and background model observed in Belle II is sufficiently understood,
a classification network could be trained that incorporates information for specific
physics processes.

2D Sectorization

Sectorization in the 2D track parameters pT and φ is implemented in the neural
network simulation, but not used in the current networks. Since the 3D track recon-
struction problem is linearized w.r.t. the 2D track, the track reconstruction is sym-
metrical in the 2D track parameters. However, the errors for low-pT tracks might
differ from the errors for high-pT tracks such that studies with sectorization in pT
might still be considered for a fine-tuning of the neural network results.

The 2D sectorization dates back to the early development phase of the neural net-
work [86], where each input of the neural network represented the scaled drift time
at a specific priority wire in a TS. With 2336 track segments, each with Left/Right
information, priority hit information and a drift time, the dimensionality of the in-
puts to a neural network covering the full (pT, φ)-region is very large. With the
intention to reduce the dimensionality of the input, where each wire was associated
with one input to the network, the track parameter phase space was sectorized in
the 2D track parameters pT, φ [86, 93]. In each (pT, φ)-sector (see Fig. 6.8 a)), only a
small number of wires could actually get hit which massively reduced the number
of inputs per expert network. Though this method used an extremely large number
of sectors (O(106)), each with a network of the same architecture, but trained with
a specific weight set. A hardware solution for this heavily sectorized network was
proposed in [106]. Using an external memory for the FPGA board, a huge number

199

SL number decreases with shallower θ

=⇒ Substantial gain in efficiency, especially for shallow tracks
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Short Track Acceptance: Compensating for CDC Inefficiencies
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I Inefficient CDC region (around φ ≈ −100◦) overrepresented in the short tracks
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The 3DHough Space

I Third track parameter: Polar
scattering angle θ

I In addition to: ω = q
r ∝ 1

pT
and φ

I Track vertex constraint:
(x, y, z) = (0, 0, 0)

I One TS =̂ 3D plane
I Selection of the stereo track

segments from (helix) track model
I For geometrical reasons: cot(θ)

instead of θ dimension

I Dimensions:
I 9 bins in cot(θ)
I 384 bins in φ
I 40 bins in ω

5.2. 3D Track Finder Algorithm

where D denotes the 3D Hough space, Ãh ∈ Ã denotes the array of weights in the
global hit subspace relating the axial hit h to all possible tracks and S̃h ∈ S̃ are the
corresponding weights of the stereo hit h. Using the elements Ãt,h ∈ Ã and S̃t,h ∈ S̃
the weights in each cell of the Hough space are given by

Dt = ∑
h∈Haxial

Ãt,h + ∑
h∈Hstereo

S̃t,h (5.53)

where Dt ∈ D are the elements of the Hough space for each track t. The resulting
3D Hough space can be interpreted as a stack of 2D Hough planes as illustrated in
Fig. 5.16.
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Figure 5.17.: Crossing of the hit representations in the 3D track parameter space.
The crossing of five axial TSs is shown in (a) and the crossing of four
stereo TSs in (b). While the axial TSs representation in (a) is identical
in all θ-bins, the stereo TSs representations in (b) depend on θ. The
same example track is used as in the previous figures (pT = 1 GeV, φ =
45◦, θ = 90◦).

However, at first the global hit representations need to be calculated. As described
in Sec. 5.2.4, the number of cells in the representations A and S were massively
reduced by using the φ-symmetry of the CDC (see Sec. 5.2.3). These transformations
are carried out for each hit h upon filling of the global 3D Hough space.

To this end, the absolute TS-ids need to be transformed into relative TS-ids within
the φ-modulo sectors using the same method as described in Sec. 5.2.3 for the train-
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The 3DHough Finder Algorithm
1. Get TSs from TSF
2. Load the hit representations into the Hough space (numeric representations)
3. Scan the Hough space for maxima (global sector maximum)
4. Put an optimized fixed cluster shape around each maximum
5. Process each cluster: Center of Gravity (ω, φ, θ) and TS extraction
6. Apply only two cuts (on SLs): min(Number ATS) and min(Number STS)

Maximum finding (for hardware): 4 CDC Quadrants with 4 Sectors
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Red lines = 4 CDC quadrants with 4 sectors each: Simultaneous track finding on FPGA.
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The L1 Trigger Pipeline
I New implementation → 3DFinder and Neuro Trigger on the same FPGA board (UT4)
I The available latency for the Neuro Tracker is increased from 300ns to 700ns

(no in-between transmission)
I Deep neural networks with four hidden layers are possible
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Deep Neural Network Architecture
→ Possible because of new trigger boards with Virtex Ultrascale 160/190 FPGAs

1. DNN: 4 hidden layers, 60 nodes
each

2. Extended input (27 → 126)
3. Classification: IP/Non-IP
4. 1/p output node for STT
5. Trained on 3DFinder Tracks

Extended input:
Every wire passing ADC cut in TS
(1 hit, 0 no-hit)

(a) Super Layer 0 (b) Super Layer 1-8
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I 4 output nodes: z, θ, 1/p, and classification
I Classification ∈ [−1, 1], +1 ≡ IP, −1 ≡ Background
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The Neural Network z Distributions

I Left: DNN (orange) and Reconstruction (blue)
I Right: Current Network (orange) and Reconstruction (blue)
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(b) The z-Distribution of the Current Network

I 3DHough + DNN: 96.7% efficiency (cut at 0.5 classification → 19.2% incorrect)
I 3DHough + Current Network: 89.0% efficiency (cut at ±15 cm → 69.8% incorrect)
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Track Based Efficiency and Rejection

I Simulation of the new algorithms on real data from 2024 (high background)
I Long vs. short track efficiency of the 3DHough approach
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I Long Track:
n(ATS) ≥ 4 and n(STS) ≥ 3

I Short Track:
n(ATS) ≥ 3 and n(STS) ≥ 2
(but not long)

I Classification of 3DNeuro tracks:
Cut on classification output node

I Classification of 2DNeuro tracks:
Cut on z with ±15 cm
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Event Based Efficiency and Rejection: Recent High Background

I Select real data events with only a single reconstructed track (exp. 35 neuroskim)
I Differentiate the events in short and long track events
I Select background (all reconstructed |z| > 1 cm) and fake track events (no reconstructed track

in event)

Data Subset Total Events 2DN-Track 3DN-Track 2D-Class. 3D-Class.

Long Single Track Events 92 878 94.11% 99.63% 93.19% 98.23%
Short Single Track Events 63 810 36.81% 96.34% 35.97% 92.05%
Background/Fake Events 3 959 983 42.86% 69.62% 12.01% 1.82%

Considerably better track finding performance on short tracks for the 3DHough Neuro Trigger

I Classification 2DN: |z| < 15 cut
I Classification 3DN: Classification cut 0.0
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Integerized Network Simulation: Fixed Bit Precision for FPGA

I For FPGA implementation:
No floating point arithmetic, only
integers

I Includes all calculations and
inputs, weights, and tanh LUT.

I No difference for 13 and 11 bit.
I Only considerably worse

performance at 7 bit.
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Summary

New 3DHough method for track finding:
I More robust against fake tracks (9/9 TS used compared to 5/9 in 2D method)
I Increase of polar acceptance possible (3 axial + 2 stereo TS)
I DNN + additional output node shows superior performance

Currently:
I Implementation of the 3DHough + DNN algorithm onto FPGAs (KIT)
I New displaced vertex trigger (DVT) for displaced tracks in development
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Outlook: Displaced Vertex Trigger (DVT)
I Current L1 Trigger: Only capturing IP tracks
I New physics: Displaced vertices?

Institut für Technik der Informationsverarbeitung

dfd

Displaced Vertex

26.09.2024

[14Patrick Eckler; 2023 Belle II German Meeting

[14]

Kai Unger

“Hot” physics from feebly interacting particles Figure 8.3: For the same event, Hough transforms are shown from the correct vertex position
(top right panel) and a random, far-away vertex (bottom right panel). The tracks are
obtained from simple peak-finding of the Hough matrix and are color coded to match the
peaks.

algorithm, the value of each pixel through which the hit curve passes is increased by one. In
other words, the hit curve has a weight equal to unity. In the modified Hough transform, the
hit curves are first weighted according to their distance to the assumed vertex. Conformal
mapping already necessitates the calculation of the vertex distance so using it to determine
weights does not add any new expensive computations. A weight function in the form of
a 3-bit look-up table is then applied to retrieve the corresponding hit-weight. Generally,
the closer a hit is to the vertex, the higher its weight should be, see figure 8.4. Lastly, the
pixel values in the Hough matrix are incremented by the weight of the hit curve rather than
simply by one. By setting all values in the LUT to unity, the original unweighted Hough
transform can be recovered. The Hough weights used in the final version of the DVT are
listed in table 6.1.

As a second measure, the hit curves corresponding to very close hits (i.e. hits closer

70

Hough track finding
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The Old L1 Trigger Pipeline

I Present implementation → 2DFinder and Neuro Trigger on separate FPGA boards
I The available latency for the Neuro Tracker is just 300ns

CDC
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≈ 5µs after beam crossing
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Preprocessing of the Network Input: Track Finding

Which TS belong to a real track?
TS selection using a two-dimensional Hough transformation:
I Axial hit in CDC (TS) gets transformed to a curve in parameter (Hough) space
I Intersection point yields the track parameters φ and r2d ∝ pT

58 5. 2D Track Finding
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Figure 5.5.: Hough transformation of a circle. There are two crossing points, one for
positive and one for negative curvature. The positive curvature result
corresponds to a track going clockwise around the circle, the negative
curvature corresponds to a track going counterclockwise with opposite
starting direction ϕ0.
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Figure 5.6.: Outgoing tracks through a given point correspond to the part of the Hough
curve with rising slope.

60 5. 2D Track Finding
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ϕ0

1
r

Figure 5.7.: Left: Construction of the Hough matrix. The parameter space is covered
with a grid and the number of lines in each cell are counted. Lines from
the same superlayer are only counted once. Right: The Hough matrix as a
histogram. Cells above a given threshold are peak candidates.

a rising slope. The center of the cluster gives an approximation of the crossing point
and can be found by averaging the center coordinates of all cells in the cluster.

Note that the definition of a peak candidate is independent of the surrounding
cells. For example, for a peak threshold of four, a cell with lines from four different
superlayers is a peak candidate even if it is connected to a cell with five lines. This
allows to evaluate all cells in parallel to find peak candidates. To get only local
maxima it would be necessary to check not only direct connections, but also indirect
connections, like neighbors of neighbors. It turns out that the performance does not
improve enough to justify the additional complexity.

Figure 5.8.: Peak candidates are combined to a cluster if they are connected over a
cell edge or over the top right to bottom left corner. Left: The center cell is
connected to the six shaded cells. Right: Two clusters of peak candidates,
not connected to each other. The center of each cluster is marked with a
dot.

Institute for Information Processing Technologies (ITIV)

Integration into CDC Sub-Trigger System

9/15/20

Location in the Trigger system

Neuro z Trigger Status

2D

sTSF

CDC
FEE

aTSF

=⇒ 2D track candidate
The Neuro Trigger has been running since January 2021 years with remarkable success.
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Preprocessing for the L1 Neural Network Trigger

From the track finding (Hough transformation) we get: ω = ±1/r2d and φ0

x

y

rSL

r2d

r2d

α

α

φ0

φrel
td

With the TS information

φwire, nwire, rSL, σLR, td,wire

we can calculate:

α = arcsin(
1
2

rSL

r2d
)

φrel = φwire − nwire ·
(
φ0 − α

2π

)

td = σLR · (td,wire − td,min)
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Performance Gain Through Classification
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The z-Resolution after Classification
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(a) z-Resolution

DNN Current Network
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(b) z-Resolution: Log Scale

I DNN: 96.7% efficiency (cut at 0.5 classification → 19.2% incorrect)
I Current Network: 89.0% efficiency (cut at ±15 cm → 69.8% incorrect)
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The Reconstructed Single Track pT-Distribution
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(c) The pT-Distribution of the Reconstruction

I Low momentum tracks overrepresented in the short tracks
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Optimal Training Parameters

Parameter Value

Epochs 1000
Patience 45
Batch Size 2048
Optimizer Adam
Loss MSE (target normalized to [−1, 1])
Learning rate 10−3

LR Scheduling Factor 0.5
LR Scheduling Patience 20
Weight decay 10−6

Activation Function tanh()
Number of Training Tracks ≈ 10 · 106

Number of Validation Tracks ≈ 1.5 · 106

Input Nodes 126
Hidden Layers 4 (60 nodes each)
Output Nodes 4 (z, θ, 1/p, class.)
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Rounded Weights and QAT

Comparison To Rounded Weights
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Weights and biases rounded to 3 decimals still as
good as 32-bit float representation:

Quantization Aware Training
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For floating point precision no improvement:
Only necessary when forced to use a precision
below 9 bits!
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Differentiated Classification Cuts
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(a) Real Tracks (no classification)
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(b) Fake Tracks (no classification)

Example cut array:
I (5, 4): 0.33
I (5, 3): 0.38
I (4, 4): 0.33
I (4, 3): 0.48
I (3, 4): 0.62
I (5, 2): 0.47
I (4, 2): 0.66
I (3, 3): 0.71
I (3, 2): 0.80

I Instead of a single across the board cut
I Optimization possible by weighting

efficiency or rejection
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3DHough: Positive and Negative Charged Tracks

Simulated Single Track:
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Positive (negative) tracks in upper (lower) ω half plane
=⇒ Intersection point yields ω, φ and cot(θ)
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What is a Hit Representation?

Given any (priority) wire

~s(λ) =

wx
wy
wz

+ λ

dx
dy
dz

 , λ ∈ [0, 1]

a hit representations describes all possible tracks (helices) in the Hough space that could
activate the wire.

As the Hough space is binned, this corresponds to a non-zero integer weight in the bin that
describes one of these helices.

A helix can be described as:

~h(ψ) = ω−1

sin(ψ − φ) + sin(φ)
cos(ψ − φ)− cos(φ)

ψ cot(θ)

 , ψ ∈ [0, 2π]
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The Numeric Hit Representations
Numeric optimization of wire and helix distance:

d(~h(ψ),~s(λ)) =

√√√√ 3∑
i=1

(hi(ψ)− si(λ))2 for λ ∈ [0, 1], ψ ∈ [0, 2π]
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Distance minimization → Hyperplane
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Creation Process

1. Take one (priority) wire
2. Consider each Hough space bin individually
3. Double Optimization (nested):

I Optimize over all possible track parameters (helices) within this bin
I Optimize for the minimum distance between the helix and the wire

4. Save the minimum distance and track parameter point of each bin
5. Weight each bin according to the distance to wire and distance to bin center
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Parameter Correlations: Reconstruction vs. Neural Network

z-correlation
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Parameter Correlations: Reconstruction vs. Neural Network

p-correlation without classification cut
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Some Perspective: Fake Track Segments in One Event

Real single track event from high background run:
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