

The New and Complete Belle II **DEPFET Pixel Detector: Comissioning and Previous Operational Experience**

Jannes Schmitz on behalf of the PXD collaboration

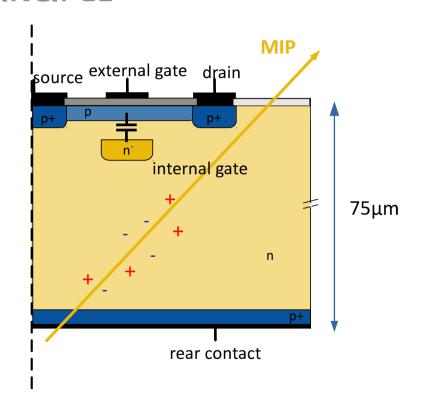
Belle II Germany Meeting

Bonn, September 9, 2025

bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung



DEPFET PIXEL PRINCIPLE

- DEpleted P-channel Field Effect Transistor (DEPFET)
- MOSFET on top of fully depleted silicon bulk
- Fast charge collection (~ns) in internal gate
- Charge in int. gate modulates drain-source current
- Internal amplification
- High signal-to noise ratio $g_q = \frac{\partial I_D}{\partial q} \approx 750 \frac{pA}{e^-}$
- Periodic clearing required

DEPFET PIXEL OPERATION

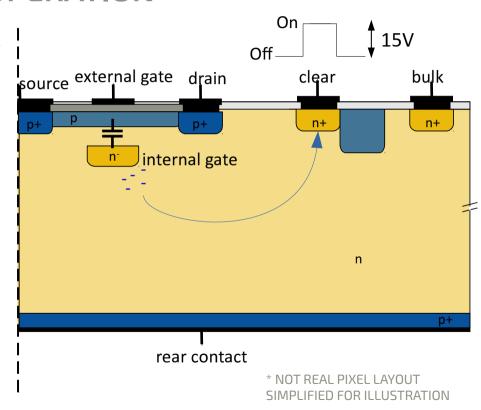
Matrix readout steered by gate and clear voltages

CHARGE COLLECTION

gate off, clear off:

- Charges drift to internal gate
- No drain current

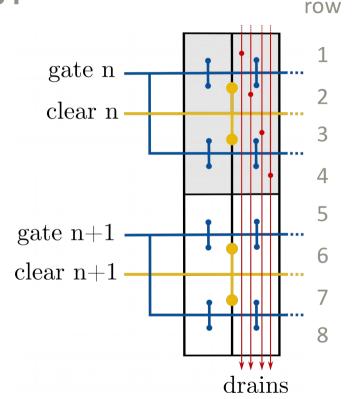
SAMPLING

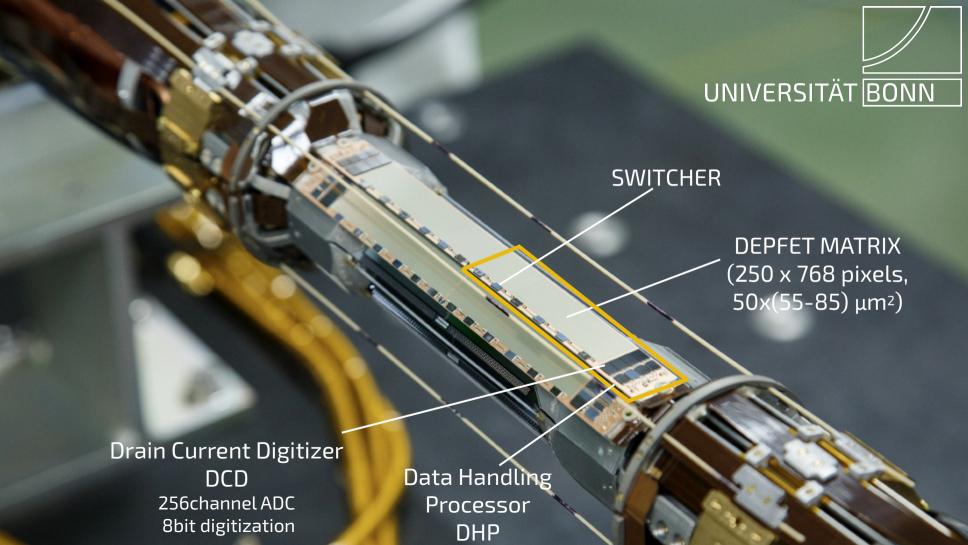

gate on, clear off:

Readout of stable drain current

CLEARING

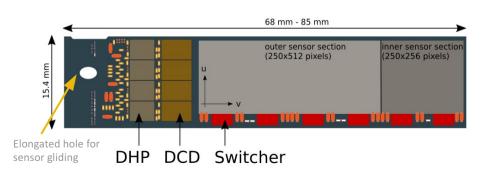
gate on, clear on:

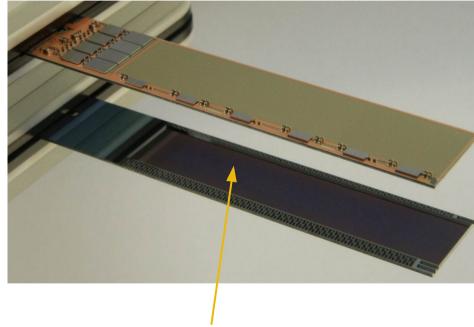

Charges drift from internal gate to clear implant



DEPFET PIXEL READOUT

- Rolling shutter readout mode with four active matrix rows at once
 - → low power consumption
 - Control signals are shared among pixels
 - 20μs integration time (2x beam revolution)
- Modulated drain current processed via drain lines
- Different ASICs for row control and signal processing

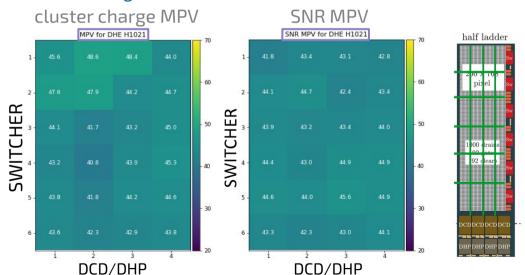


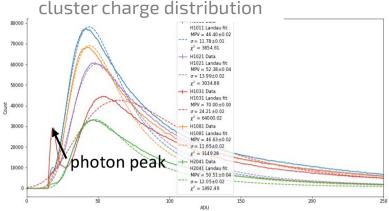


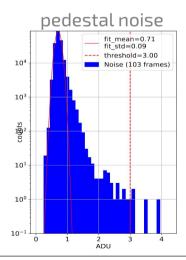
THE PIXEL VERTEX DETECTOR (PXD) MODULE

PROPERTIES

- Self-supporting all-silicon design
 - 450-525μm thick support frame
 - Active region thinned to 75μm
 - \rightarrow small total material budget ~0.21% X₀
- Pixel size 50 x (55-85) μm²


Thinned backside at active sensor area




PXD1 PERFORMANCE

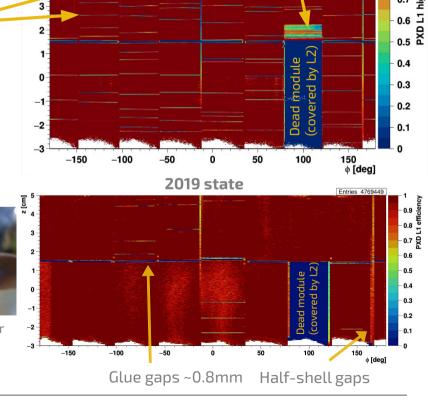
- Homogeneous signal and noise response across module matrix
- Noise performance < 1 ADU (~200e-) at SNR of ~30-50 (noise slightly increasing with DCD irradiation)
- Stable throughout 2019-2022

multi pixel cluster ADU

PXD1 EFFICIENCY

DI-MUON HIT EFFICIENCY

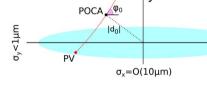
- ~99% in fiducial regions
- ~96% in physics region


inefficient/dead readout channels

BEAM LOSS EVENTS

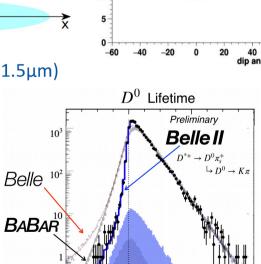
- Radiation bursts to PXD up to 3Gy in 40μs
- Permanent Switcher damage after beam incidents
 - → Inefficient/dead readout rows
 - → ~3% drop in efficiency
- Possible mitigation:
 - Accelerator : earlier detection
 - faster beam dump
 - PXD: faster emergency shutdown

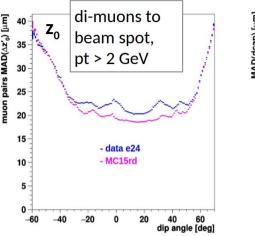
Lost beam hitting collimator → high inst. radiation

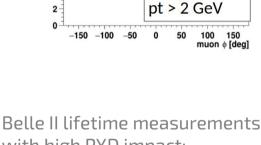

noisy Switcher

PXD1 PERFORMANCE &

IMPACT PARAMETER RESOLUTION


- Di-muon events (p₊ > 2GeV)
 - $z_0: 20 40 \mu m$
 - $d_0: 10 22 \mu m$


- MC describes data
 - MC slightly too optimistic ($\Delta z_0 \approx 3 \mu m$, $\Delta d_0 \approx 1.5 \mu m$)
- ~1.5 2 times better than Belle


D^o LIFETIME RESOLUTION

- Impact of better vertex detector
 - \rightarrow Belle II D₀ lifetime resolution ~ 2 times better

τ [ps]

- data e24

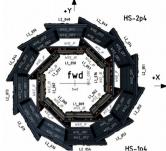
- MC15rd

di-muons to

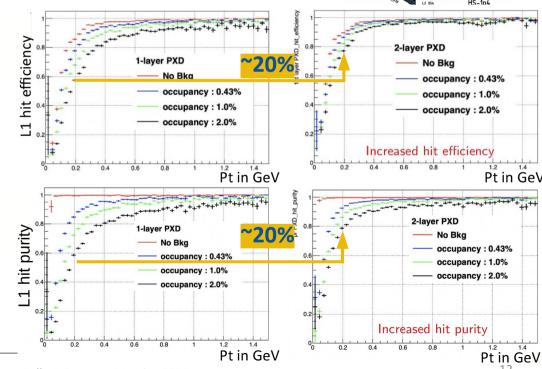
beam spot,

with high PXD impact:

 $D_s^+: arXiv:2306.00365 \rightarrow PRL$ Bo: PRD 107, L091102 (2023) Ω_c+: PRD 107, L031103 (2023) Λ_c⁺: PRL 130, 071802 (2023) D⁰/D⁺: PRL 127, 211801 (2021)



FULLY POPULATED 2-LAYER PXD2


BENEFIT OF 2ND PXD LAYER

- Modest improvement of impact parameters (L1 highest impact)
- Higher probability to select correct PXD hits in 1st PXD layer at higher background levels
- Fraction of MC hits found in reconstructed track

$$\label{eq:normalization} \text{hit efficiency} = \frac{N_{\text{mc_hits_in_reco_track}}}{N_{\text{hits, mc_track}}}$$

 Fraction of MC hits in reconstructed track hits (how much background was picked up?)

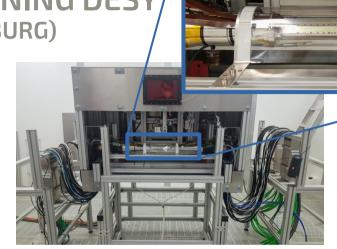
$$\label{eq:numbers} \text{hit purity} = \frac{N_{\text{mc_hits_in_reco_track}}}{N_{\text{hits, reco_track}}}$$

UNIVERSITÄT BONN

PXD2 COMMISSIONING DESY

HALF-SHELL COMMISSIONING (DESY, HAMBURG)

Pre-commissioning with full services, CO2 and N2 cooling

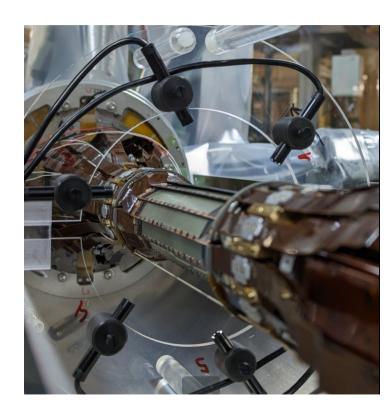

- Half-shell mounted on aluminum dummy beampipe
- Movable 90Sr for signal response tests
- 1st half-shell damaged during long-term operation

PROBLEMS FOUND

- Non optimal PXD ladder gliding
 - → Kink in 2 L1 ladders, Repair & Reassambly
 - → Adjusted screw torque to improve gliding

DEDICATED ENDURANCE STUDIES

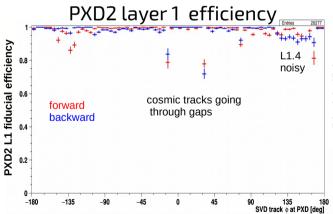
- >90k cycles with sagitta >1mm
 - → Ladders quite robust against bowing
- Elevated temp + bowing might open glue joint



PXD2 COMMISSIONING KEK

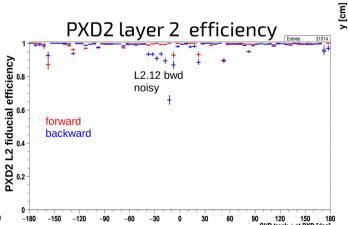
PXD2 STANDALONE TESTING

- Full optical & environmental monitoring in dry volume
- Step by step module operation with cooling adjustments
 - → Successive full detector operation
 - → Significant bending (~1mm) in 2 outer ladders



FIRST PXD2 COSMIC DATA SEPTEMBER23

(NO B-FIELD)


EFFICIENCY

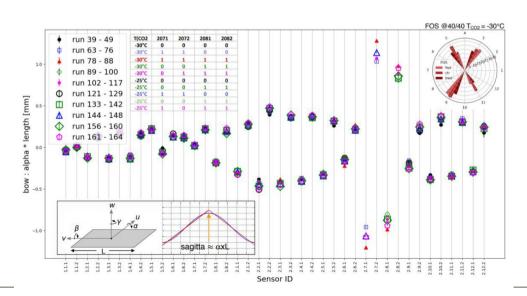
- Extrapolated SVD tracks
- Reaching > 98% in most regions
- Eff. Drops due to
 - Gaps for cosmics
 - Masked noisy pixels (esp. L2.12bwd)
 - → further module tuning ongoing

ALIGNMENT


- Extrapolated CDC tracks
- Alignment done per module
 - 6 rigid body, 7 deformation parameters
- Ladder bowing visible
 - Up to ~1mm for L2.7/L2.8

xy-projection of spacial cosmic hits after alignment

Scale x5

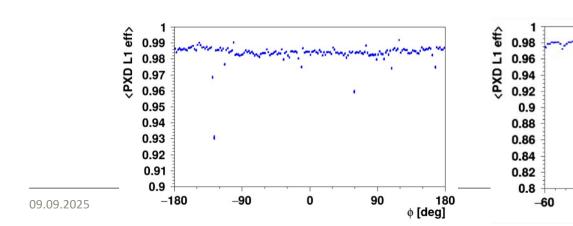


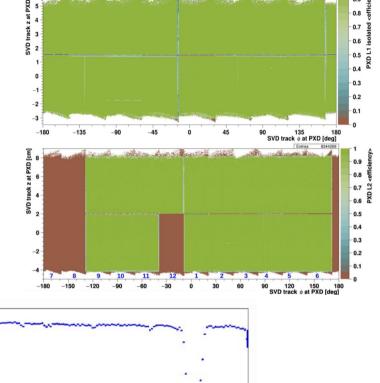
PXD2 BENDING COSMIC STUDIES

ALIGNMENT STUDIES WITH DIFFERENT COOLING CONFIGURATIONS

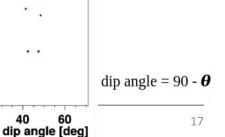
- Confirmed ~1mm sagitta for two ladders (less than tested in endurance tests)
- Decided to keep both ladders off during operation start

Here: All misalignment parameters in payloads multiplied by 10. Sensor 3D surface plotted point by point (+ color for w-coordinate)



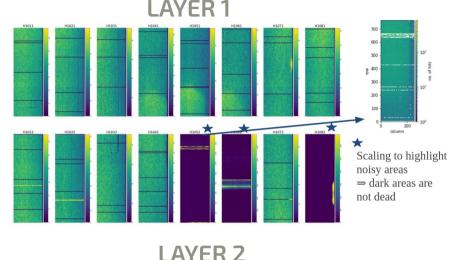


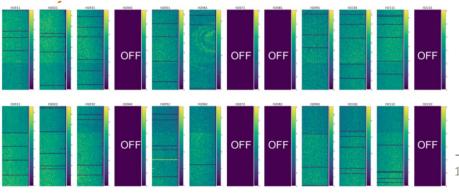
PXD2 PERFORMANCE


OPERATION IN 2024AB

- Running with 35/40 modules
 - 4 Module off because of bowing
 - 1 Module off because of noise
- L1 and L2 efficiency > 98% in fiducial region
- Smooth Operation, temperatures high, but within limits

e30 runs 2343-2407




PXD2 PERFORMANCE AFTER SBLS

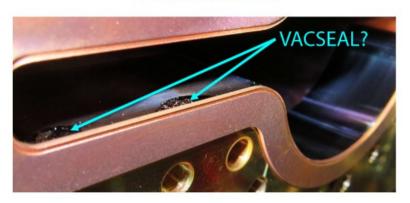
AFTERMATH

- Two sudden beam losses in April/May 2024
 - → Dead gates and noisy Switchers
 - → Increased Switcher currents
- Lost ~2% of active pixels
- Decided to turn off another 3 modules. to compensate temperature rise from currents
- PXD2 completely turned off to prevent further damage after 2nd SBL

BEAM LOSS EVENTS

CAUSE

 Vacuum leak sealant "VACSEAL" found to be strong candidate for causing SBL events

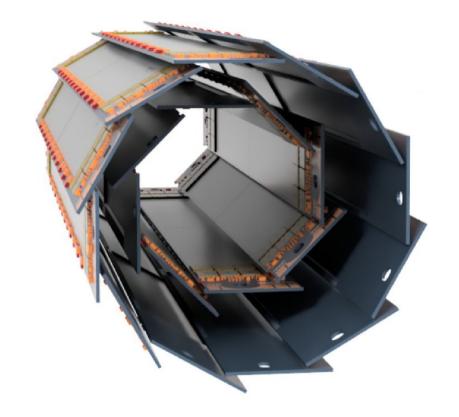

IMPACT OF VACSEAL REMOVAL

- One bellows chamber exchanged on 6th Nov. 2024
- Before (Oct 9th Nov 6th): 0.141 SBL / beam dose(1/Ah)
- After (Nov 6th Dec 27th): 0.043 SBL / beam dose (1/Ah)
- No SBLs with pressure burst in this section after replacement

OUTLOOK

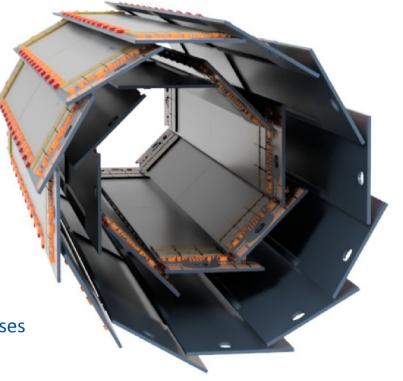
- Cleaning and VACSEAL removal in pipes and bellows done for most sections during 2025 shutdown
- Likely not the only source, but one main contributor
 - → Need to observe SBL numbers in next run
- Lot of ongoing work on early SBL detection & fast PXD shutdown

Before removal


After removal

SUMMARY

- PXD1 (2019-2022)4 years successful operation with single layer
- Overall efficiency ~96 %
- 2x improvement of Do lifetime resolution (compared to previous experiment)
- Challenges: beam backgrounds and beam losses

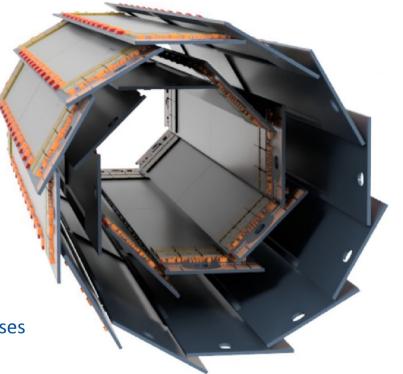

SUMMARY

- PXD1 (2019-2022)4 years successful operation with single layer
- Overall efficiency ~96 %
- 2x improvement of Do lifetime resolution (compared to previous experiment)
- Challenges: beam backgrounds and beam losses

PXD2 (SINCE 2023)All 40 modules operable after successful commissioning

- L1 and L2 efficiency > 98% in fiducial region
- Challenges: 2 ladders show significant bending

- 2% dead pixel and increased operational temperatures caused by sudden beam losses

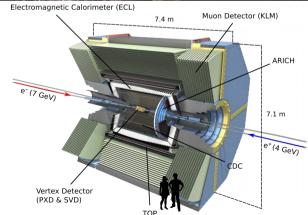

SUMMARY

- PXD1 (2019-2022)4 years successful operation with single layer
- Overall efficiency ~96 %
- 2x improvement of Do lifetime resolution (compared to previous experiment)
- Challenges: beam backgrounds and beam losses

- PXD2 (SINCE 2023)All 40 modules operable after successful commissioning
- L1 and L2 efficiency > 98% in fiducial region
- Challenges: 2 ladders show significant bending
 - 2% dead pixel and increased operational temperatures caused by sudden beam losses

OUTLOOK

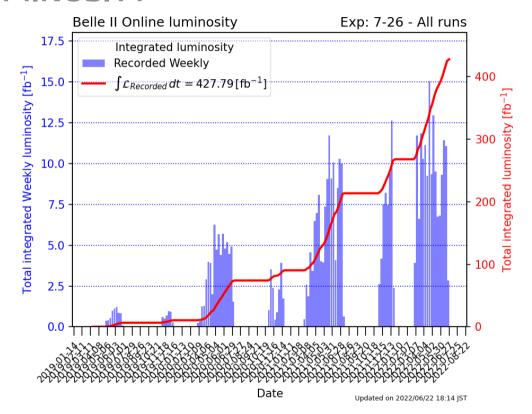
- PXD2 turned off for now
 - → Work on optimized beam operation, SBL prevention/detection and fast shutdown ongoing
- PXD2 especially needed for later runs with high luminosity and higher background


BACKUP

SUPERKEKB ACCELERATOR & BELLE II DETECTOR

- Asymmetric e+e- collider in Tsukuba , Japan
- $E_{CM} = M_{Y(4S)} \approx 10.58 \text{ GeV} \rightarrow \text{"B factory"}$
- Physics data-taking March 2019 July 2022
- Recorded a total physics data set of L_{int} ≈ 424 fb⁻¹
- $L_{\text{neak}} = 4.7 \times 10^{34} \text{ cm}^{-2}\text{S}^{-1} \text{ (June 2022)}$
- Ongoing long shutdown (LS1) since July 2022
 - ~1.5 years for accelerator and detector improvements

BELLE II LUMINOSITY


TOTAL INTEGRATED LUMINOSITY FOR GOOD RUNS

• Total L_{int}: 424 fb⁻¹

• Total L_{int} at Y(4S): 363 fb-1

• Total L_{int} below Y(4S): 42 fb-1

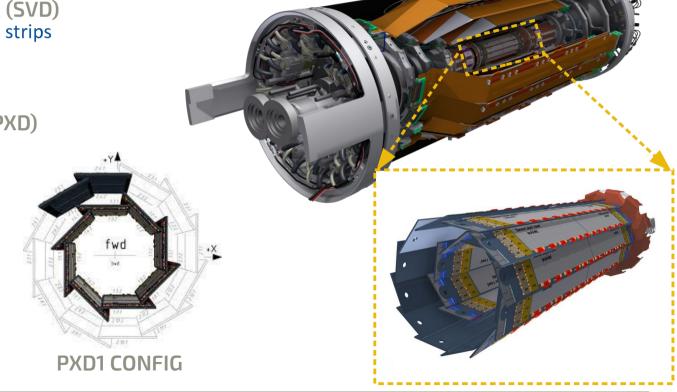
• Total L_{int} above Y(4S): 19 fb-1

THE VERTEX DETECTOR (VXD)

SILICON VERTEX DETECTOR (SVD)

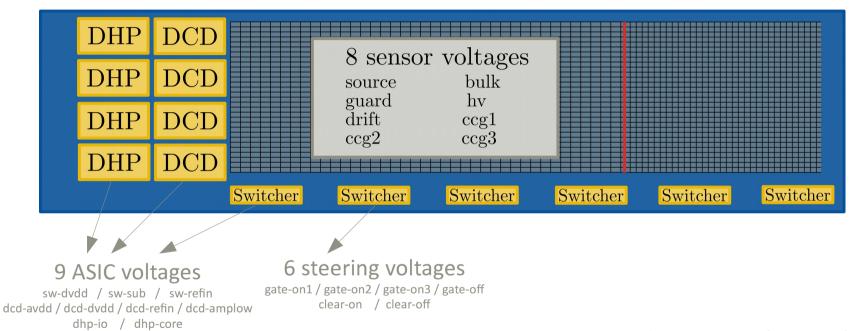
4 layers double-sided silicon strips

• R ≤ 140mm

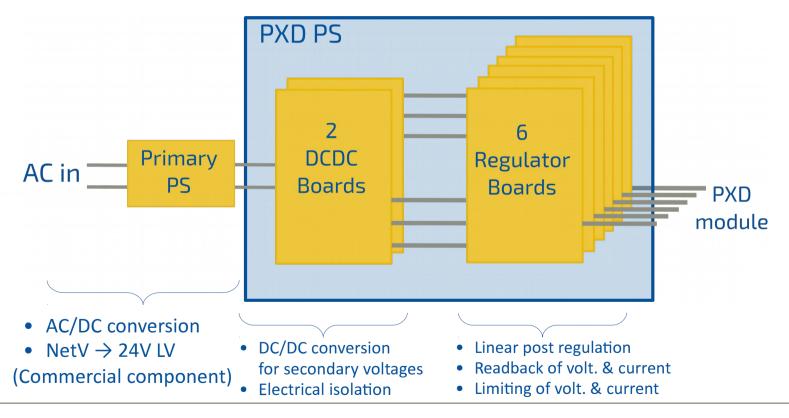

PIXEL VERTEX DETECTOR (PXD)

2-layer DEPFET
 PXD1 2019-2022 incomplete
 PXD2 from 2023 full 2-layer

• $r_1 = 14$ mm, $r_2 = 22$ mm

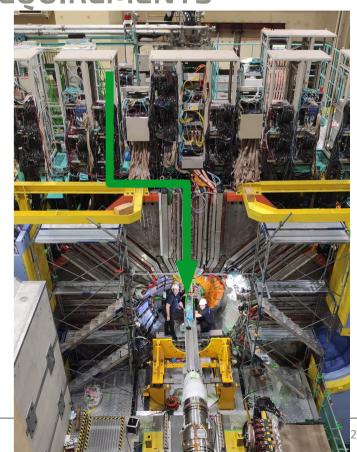

ACCEPTANCE

- 17° < Θ < 150°
- p_t ≥ 40 MeV


PXD POWER REQUIREMENTS

→ 23 voltages must be supplied to each PXD module

PS SYSTEM ARCHITECTURE

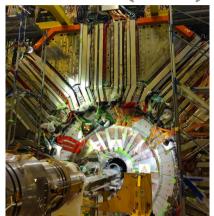


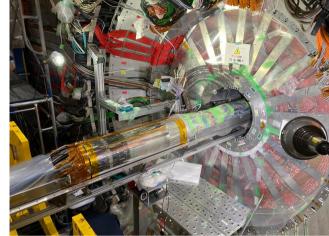
PXD POWERSUPPLY REQUIREMENTS

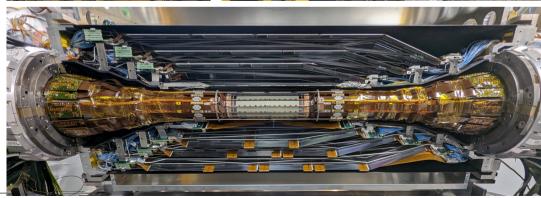
- Need 23 voltages, ranging from 80V to + 20V with additional dependencies
- Currents up to 3A
- **Enabling of hardware current limits**
- Supplied via 15m long cables from top of Belle II
 - → Compensate for voltage drop
 - → 4-wire sensing and stable regulation

→ No commercial solution fulfilled all necessary features

COMMISSIONING OF THE NEW

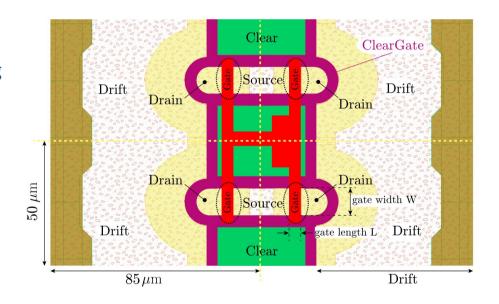

VERTEX DETECTOR (VXD)


PXD1 EXTRACTION


- Old VXD extracted from Belle II in May 23
- Strip Vertex Detector (SVD) reused in new VXD
- PXD1 mechanical inspection did not show visible damage after 4 years operation

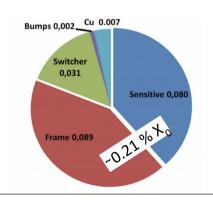
NEW VXD

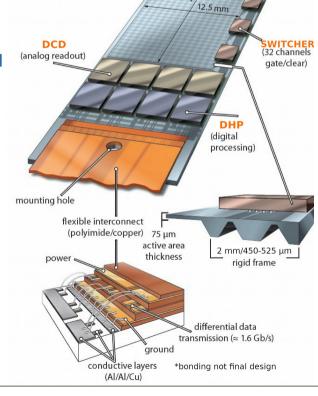
- Extracted SVD halves installed around PXD2
- Combined standalone testing
- Inserted back in August 2023



DEPFET PIXEL DESIGN

- Four-fold pixel design
 - Allows parallelization in metal routing
 - Source and Clear implant shared among multiple pixels
- Rolling shutter readout mode with four active matrix rows at once → low power
 - 50 kHz → 20 µs integration time
 (2x beam revo. cycle)
 - dead-time free except for 100 ns read-clear cycle





CUSTOM PXD ASICS

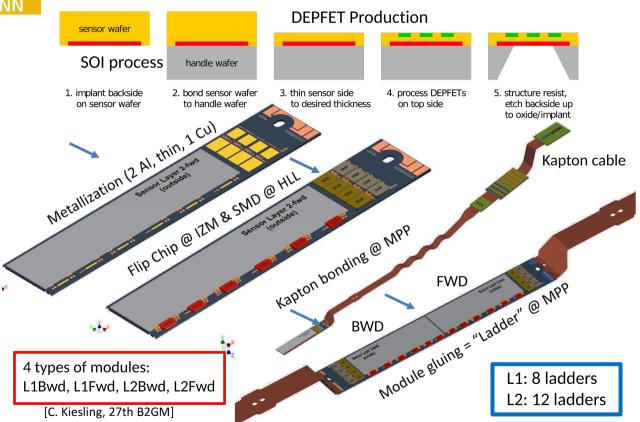
DCD DRAIN CURRENT DIGITIZER

- pipeline 8-bit ADC per channel
- 256 input channels
- 92 ns sampling time
- UMC 180nm
- rad. hard proved (10 Mrad)

SWITCHER

active area

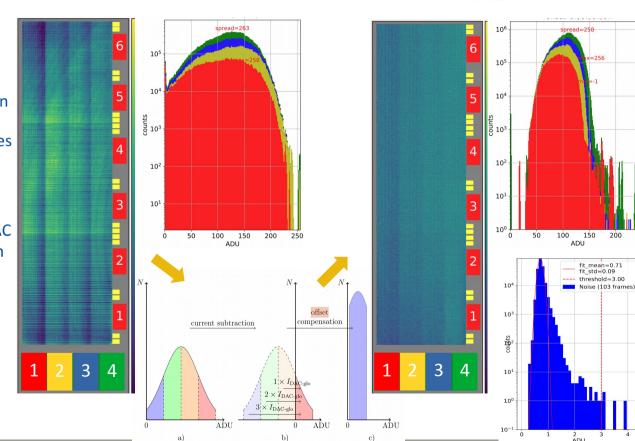
► 250 nx


- gate and clear signals for row control
 - 32 channels control 4 rows each
- fast HV ramping for clear
- AMS/IBM HV CMOS 180nm
- size 3.6 x 1.5 mm²
- rad. hard proved (36 Mrad)

DHP DATA HANDLING PROCESSOR

- data processing and transmission
 - pedestal correction
 - data reduction (zero suppression)
 - transmission at 1.6 Gbit/s
- TSMC 65nm
- size 4.0 x 3.2 mm²
- rad. hard proved (100 Mrad)

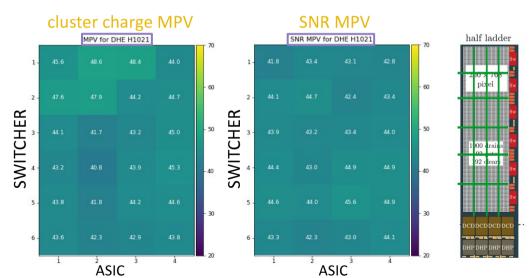
WAFER PROCESSING AND MODULE PRODUCTION

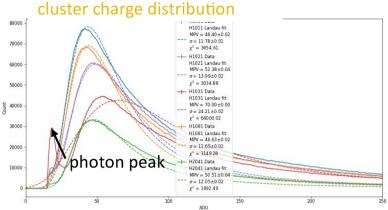


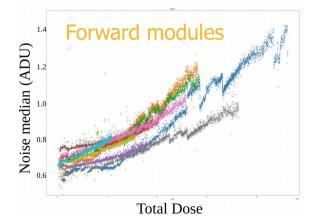
PXD CALIBRATION

BEFORE

AFTER


- Characterized modules before installation
- Further optimization during operation
- Improved/automated operation, monitoring and calibration procedures
- DCD calibration
- Biasing optimization
- Pedestal optimization on DCD
 - Pedestal compression via 2-bit DAC
 - Analog Common Mode Correction (ACMC) for noise reduction
 - Low noise $<1 ADU \simeq 200 ENC$
- Stress tests
 - Power cycling
 - Thermal cycling




PXD1 PERFORMANCE

- Homogeneous noise and signal response across the module matrix
- Stable throughout 2019-2022
- Slight increase in noise with DCD irradiation
 - Maybe more extensive DCD calibration is needed
 - Under investigation

35

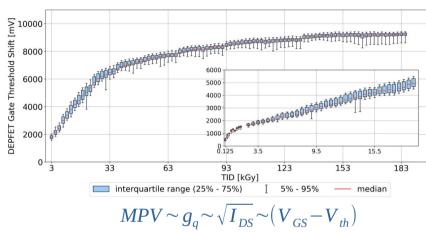
PXD1 RADIATION DOSE AND THRESHOLD SHIFT

Module 1.8.1

Module 1.8.1

Module 1.8.1

Module 2.8.1


Module 1.8.1

Module 3.8.1

Mo

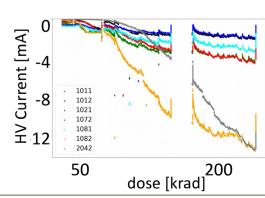
- Dose estimation on module occupancy
- Module dependent TID
 → 2.5-6.5 kGy (2019-2022)
- Expected Lifetime exposure of PXD is ~200kGy in 10years

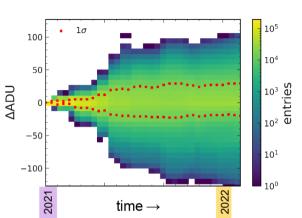
X-RAY LAB CAMPAIGN

- Oxide damage → shift of MOSFET threshold V_{th}
- Compensated by regular adjustment of V_{GS}
 - \rightarrow keep g_q constant
- Lab results consistent with PXD experience

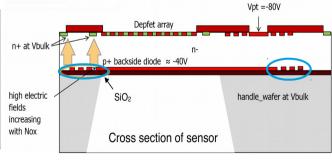
RADIATION AGING EFFECTS

TRAPPED OXIDE CHARGES


Shift of DEPFET threshold voltage

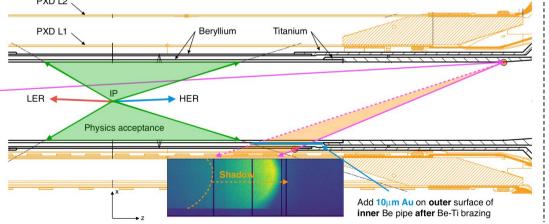

PEDESTAL AGING

- Broadening of pedestal distribution and noise increase
- Inhomogeneous across matrix
 - → potential challenge for pedestal compression

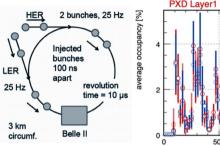

INCREASING HV CURRENT

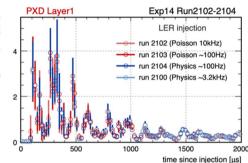
- Guard rings are (partially) shorted
- Burried oxide damage → high E-fields
 → avalanche current multipl. → High I_{HV}
- Modification of PS units
 - → Performance not affected

H1012: pedestal shift



BACKGROUND CHALLENGES


SYNCHROTRON RAD. BACKGROUND


- From back-scattered SR fan photons on edge of Ti BP
- Appear during HER injections (large betatron osc. during cooldown)
 - → inhomogeneous module irradiation
 - → deterioration of clustering and tracking

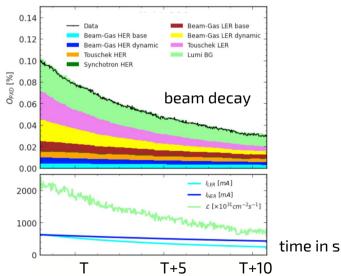
New modified BP with new geometry and add. gold plating

INJECTION BACKGROUND

- From newly injected bunches (50Hz)
- Touschek effect limits beam lifetime to few mins → continuous injection
- 3% occupancy threshold in PXD
 → no problem so far
- Damping takes ~ms
 - → Full and gated vetoes

BEAM BACKGROUNDS

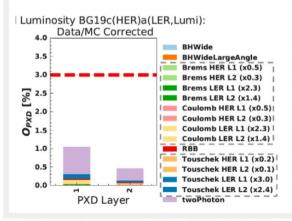
BEAM STORAGE


- Beam-gas scattering beam interaction with residual gas molecules
- Touschek scattering
 Coulomb scattering within bunch

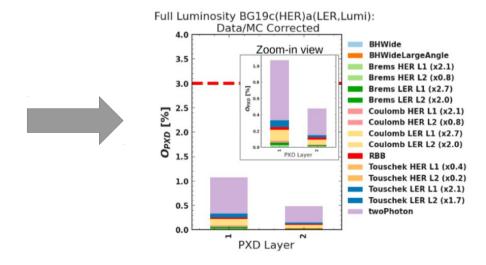
LUMINOSITY (BEAM COLLISIONS AT IP)

- Two-photon interaction
- Radiative Bhabha

beam collision (storage + lumi)



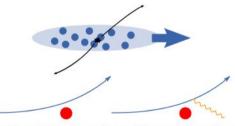
BEAM BACKGROUND EXTRAPOLATION


BASED ON SINGLE BEAM DATA/MC @ DEC 20 2021

Parameters @ Original	LER	HER
Design Optics		
Beam current [A]	3.6	2.6
N. of bunches	2500	2500
Vertical beam size [um]	24	10
$\beta_{\rm x}^*/\beta_{\rm y}^*$ at IP [mm]	32/0.27	25/0.30
Pressure [nTorr]	1	1

Use data/MC 27.06.2020 bugfix2 ratios to correct the BG19c sample [taken from Sally's talk @ PXD Background Workshop, 17.08.2021]

- Updated LER & HER components using current Data/MC factors
- Small changes expected for total extrapolation
 → dominated by two-photon background



PXD BACKGROUNDS AT BELLE II

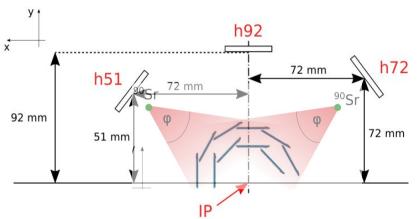
PXD Backgrounds @ Belle II

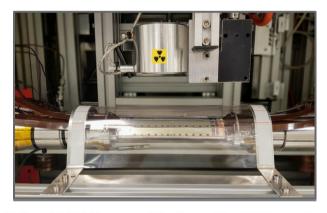
Single-beam backgrounds:

- ▶ Touschek scattering \rightarrow scattering of particles within a bunch \rightarrow Touschek rate $\propto N_{particles} \times \rho \rightarrow I \times \frac{1}{\sigma_{\text{vnh}}}$
- ▶ beam-gas scattering → Coulomb scattering and Bremsstrahlung (scattering off gas molecules) → Beam-gas rate $\propto N_{gas\ molecules} \times N_{particles} \rightarrow P \times I \times Z_{eff}^2$

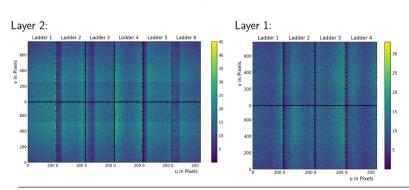
- ▶ synchrotron radiation background → consequence of a radial acceleration of the beam's particles achieved in bending magnets and quadrupoles
- ▶ injection background → continuous injection of charge into beam bunch modifying the beam bunch Single-beam backgrounds can be mitigated with beam-steering, collimators, and vacuum-scrubbing

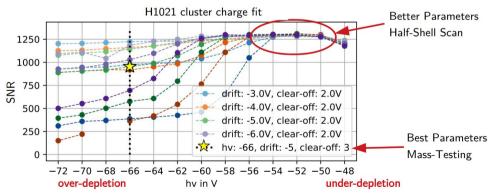
Luminosity backgrounds:


two-photon background \rightarrow leading luminosity background ($e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-e^+e^-$), unlike any of the backgrounds above cannot be reduced!


DESY. | S. Stefkova | ICHEP 2020, 30.07.2020

Page 6

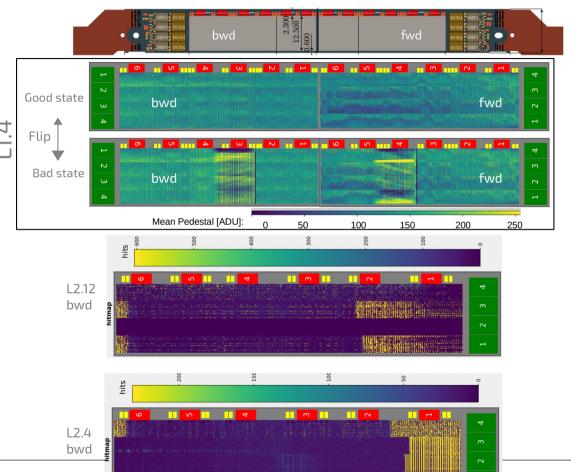



PXD2 BIAS OPTIMIZATION

More than 200 voltage combinations, 15 minutes each

PXD2 MODULE STATUS

GENERAL


• All 40 modules operable

UNSTABLE SWITCHERS L1.4

- Two module states
- Problematic readout channel or broken switcher?
- Temporary solution: reduction of gate-on voltage

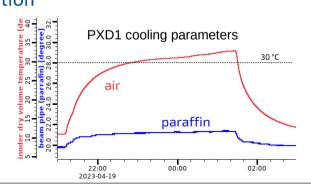
PEDESTAL GLITCHES

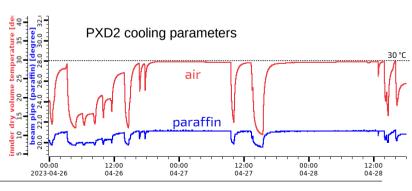
- 2 modules with regions of significant pedestal shifts within individual frames
- Dominant structures in L2.4bwd,
 L2.12bwd → mask these pixels

AIRTEMPERATURE INNER DRY VOLUME

PXD1 COOLING PARAMETERS

C02:-20°C N2:28l/min


- Inner dry volume exceeded 30 °C
- No saturation observed → stopped
- Elevated temperatures and mechanical stress can be problematic for ladder glue joint


PXD2 COOLING PARAMETERS

C02 : -25°C N2 : 32l/min

~20h permanent operation

- Air temp. saturated at 29 °C
- Paraffin (beam pipe) temp. stable at 21 °C

outer dry volume

paraffin active beam pipe cooling

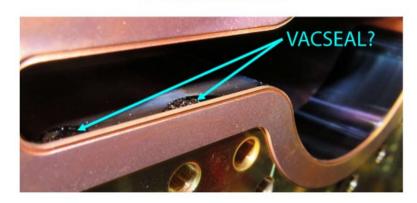
inner dry volume

temperature sensors air

BEAM LOSS EVENTS

CAUSE

 Vacuum leak sealant "VACSEAL" found to be strong candidate for causing SBL events


IMPACT OF VACSEAL REMOVAL

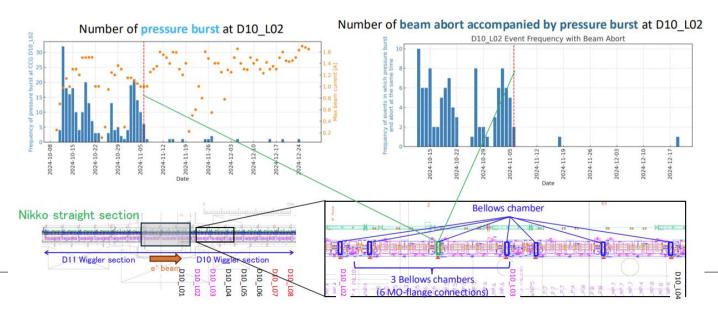
- One bellows chamber exchanged on 6th Nov. 2024
- Before (Oct 9th Nov 6th): 0.141 SBL / beam dose(1/Ah)
- After (Nov 6th Dec 27th): 0.043 SBL / beam dose (1/Ah)
- No SBLs with pressure burst in this section after replacement

OUTLOOK

 Cleaning and VACSEAL removal in pipes and bellows scheduled for 2025 shutdown

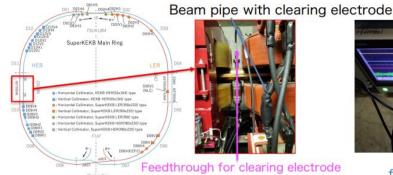
Before removal

After removal

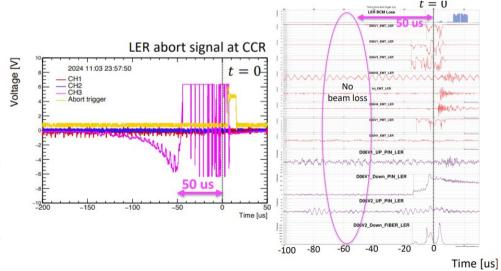


BEAM LOSS EVENTS

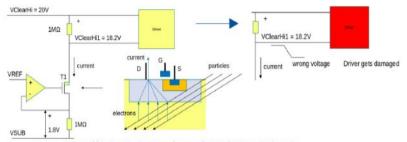
- IMPACT OF VACSEAL REMOVAL
 One bellows chamber exchanged on 6th Nov. 2024
- Before (Oct 9^{th} Nov 6^{th}): 0.141 SBL / beam dose(1/Ah)
- After (Nov 6^{th} Dec 27^{th}): 0.043 SBL / beam dose (1/Ah)
- No SBLs with pressure burst in this section after replacement

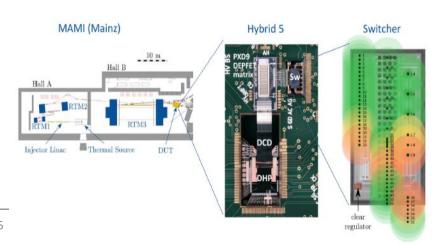


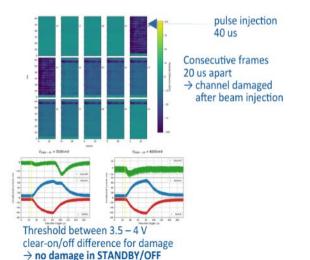
BEAM LOSS EARLY DETECTION


ONGOING DEVELOPMENT

- New sensors, improved signal transmission
 → Faster and earlier detection of SBLs
- Plan : Include signals into PXD interlock
 → Lower threshold to put PXD into safe OFF state
- Candidate : Signal in clearing electrode
 - Signal detected close to area where pressure burst occurred
 - Strong correlation with SBLs
- Cable routing started (amplification and integration still TBD)
- To benefit from faster detection, we must minimize PXD shutdown delay

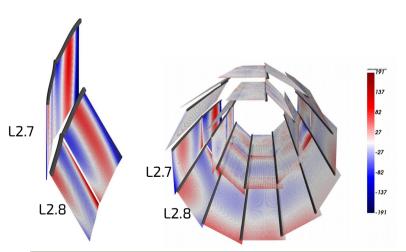

Monitor the signal from the feedthrough

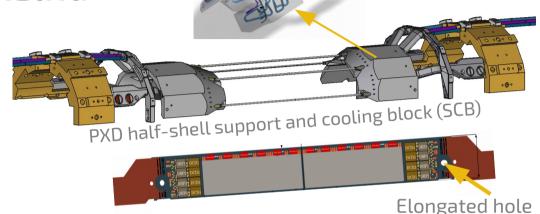



SWITCHER DAMAGE MECHANISM

- Reproduced in laboratory with electron pencil beam:
 "Irradiation Burst Studies on Belle II PXD Module Components"
 https://docs.belle2.org/record/3258
- Regulator structure susceptible
 - Transient current causes overvoltage
 → damages driver
- Not understood: damage in individual channels

source: https://indico.belle2.org/event/5289/#70-switcher-3





LADDER BENDING

COOLING PROPERTIES

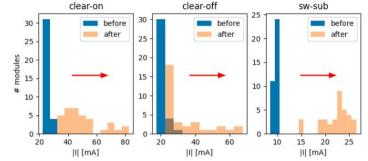
- Power consumption ~9W per module
 → 360 W for full detector
 - 2-phase CO₂ for DHP/DCD (8W)
 - N₂ gas for sensor + switchers (1W)

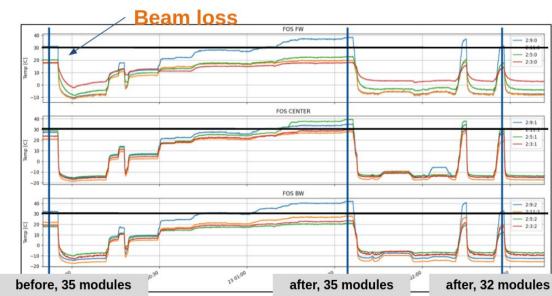
- Thermal stress should be prevented by ladder gliding
- Problem of unsatisfactory gliding known from commissioning
- Dedicated bending study: ladder & glue joint still intact even after 90k cycles with sagitta ≥1mm (up to 2mm)
- **BUT**: If L2.7 turned off, could potentially touch L2.8
 - → Implementation of interlock condition to prevent this condition

OPERATION TEMPERATURE

- After damage on Switchers, currents are increased
 - → Increased temperatures esp. at balcony

Restrain temperature increase by turning off


additional modules


DESY TESTS

- Glue joint may open under mechanical stress & high temperature
- Glue softens at ~48°C
- Ladder gets kinked at joint, but intact
- In all tests modules stayed connected

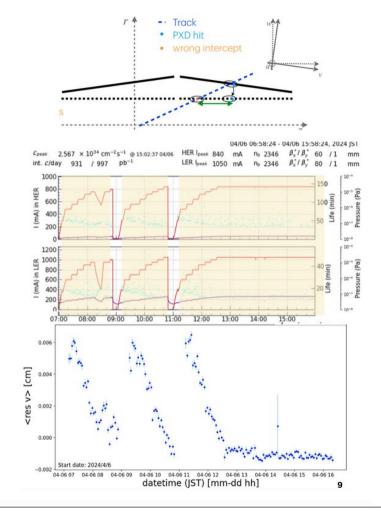
SAFETY MECHANISMS

- Alarm limits on 33°C and 35°C FOS tem
- Emergency off at 45°C

PXD Bowing

Study bending of ladders

- Different temperatures and expansion coefficients introduce mechanical stress on ladders
- Non optimal gliding mechanisms can not absorb the full effect
 Ladder start to bend
- Investigate if and how bending depends on beam operation
- Study bowing with variable which is sensitive to bowing:

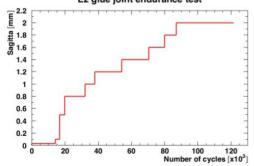

Observation:

- Bending depends on local sensor temperature and beam current (hot spot)
- Increasing current = decreasing residual (and vice versa)
- Underlying concept not fully understood
 - -> Bending behaviour could change with even higher beam currents

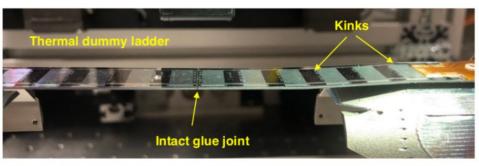
Plans:

- Ongoing work to include variable in DQM module (on-time tracking of bending)
- Implementation before next run start

DESY.



LADDER BENDING STUDIES AT DESY


Thermal dummy L2 ladder bent with gradually increasing sagitta

- $\bullet \sim$ 4500 cycles at Δ 0.9 mm
- ullet \sim 2500 cycles at Δ 1.1 mm
- >100 cycles at 1.8 mm
 - -> ladder developed two kinks
- → Thermal dummy ladder mechanically different
- → Both kinks at resistor lines

Repeat with recently glued L2 dummy ladder
L2 glue joint endurance test

After more than two months with more than 90k cycles with sagitta >1mm \rightarrow Ladder still intact

TRACKING AT BELLE II

Tracking at SuperKEKB

Challenges

- increased backgrounds with instantaneous lumi
- beam lifetime only few minutes
 ⇒ continuous "top up" injection (for 2400 bunches)
 (50 Hz @ 4 ms cooldown ⇒ 4 ms damping time with particle losses)
- "Synchrotron", "Touschek intra-bunch scattering", "Bhabha", "2 photon"...
- challenge for detector/tracking overall (challenges for PXD discussed explicitly later)
- smaller Lorentz boost (for better beam lifetime at 4 GeV > 3.5 GeV)
 - critical for time dependent measurements

Track reconstruction and PXD role

- (HLT) track finding seeded in CDC (pT > 100 MeV) or else SVD
- PXD hits used in offline track fit → improved vertex resolution
- Regions of Interest (ROI) filtering:
 - HLT: extrapolates tracks to ROIs on PXD for readout to reduce data rate not needed yet
- PXD layer one crucial for impact parameter resolution
- PXD layer two (will be) important to retain performance at higher backgrounds

LER injection cycle injected bunches passes Belle II seen from data) time since injection [µs] ated veto 2 time since injection [us] Belle II DAQ System PXD L1 event display -150 -200 Φ [pixel idx] 2.6% occupancy

Exp14 Run1959 Un

Exp14 Run1959 Unskimmed

DESY.