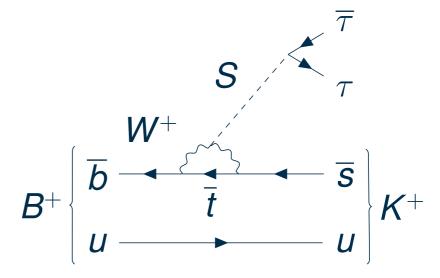

# Search for a new spin 0 mediator in $B \rightarrow K S(\rightarrow \tau \bar{\tau})$



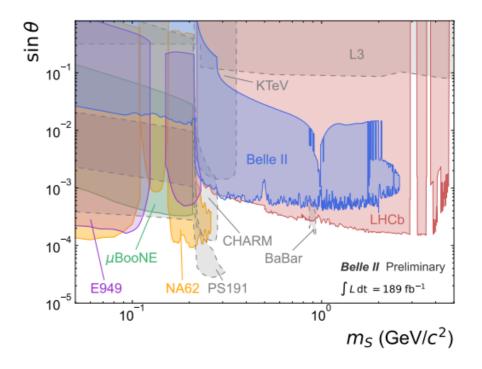





**Luc Brandl** | Patrick Ecker | Giacomo De Pietro | Torben Ferber | September 9, 2025



# The Penguin Diagramm


- search for Dark Physics in flavor-changing neutral currents (FCNC)
  - FCNC are strong suppressed in Standard Model
- B meson decays into a kaon over a W boson top loop
- W boson (or top quark) radiates a long-lived dark Scalar (S)
- lacktriangleright this analysis considers the au final state for the dark scalar decay



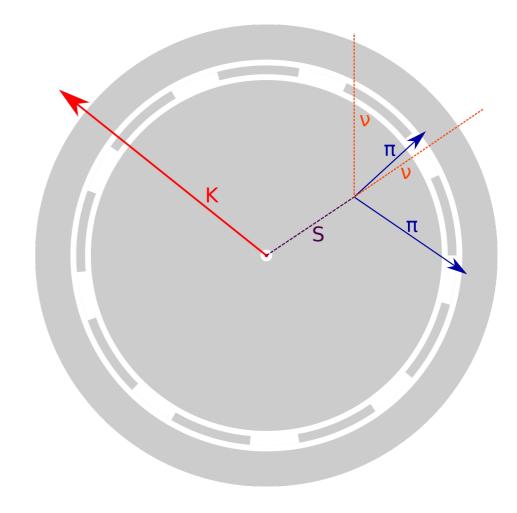


## **Motivation**

- previous analysis by Sascha Dreyer
  - Ref: https://journals.aps.org/prd/abstract/10. 1103/PhysRevD.108.L111104
- lacksquare analyzing both  $B^+ o K^+ + S$  and  $B^0 o K^{*0} + S$
- looking at S to  $e/\mu/\pi/K$  final states
- mass range of 0.025 GeV to 4.78 GeV
- lifetimes  $c\tau$  of 0.001 cm to 400 cm
- no evidence for the signal process is found






# **Analysis strategy**

- generate  $B \rightarrow K S(\rightarrow \tau \bar{\tau} \text{ signal using release-08-00-09})$
- 10.000.000 events per configuration
- use existing MC16 FEI-skim background
- identify cuts to reject background
- implement a best candidate selection
- find the optimal signal extraction method
- calculate the BF upper limits



# **Decay Signature**

- prompt charged kaon
- lacktriangle displaced S vertex with 2 aus
- lacksquare au is almost at rest
- tight mass constraints on S
  - $lacksquare M_{\mathcal{S}} > 2 \cdot M_{ au} pprox 3.5 \, \mathrm{GeV}$
  - $lacksquare M_S < M_B M_K pprox 4.78\,\mathrm{GeV}$
- at least 2 neutrinos





# au decay



Figure:  $\tau$  Decays Source: Metzner, Felix, 2022, https://publikationen.bibliothek.kit.edu/1000148812

focus on 1 prong decays

$$au au au au au au au_e + ar{
u}_e + 
u_ au$$

$$\tau \to \mu + \bar{\nu}_{\mu} + \nu_{\tau}$$

$$\tau \to \pi + \nu_{\tau}$$

$$\tau \to \rho + \nu_{\tau}$$

- $\rightarrow$  71.5 %  $\tau$  coverage
- decay channels

$$\bullet$$
  $\tau_1 \rightarrow e/\mu/\pi/\rho + \nu (+\nu)$ 

$$\blacksquare$$
  $\tau_2 \rightarrow e/\mu/\pi + \nu \ (+\nu)$ 

- $\rightarrow$  total of 33 %  $auar{ au}$  coverage
- high number of neutrinos
  - $\blacksquare$  hadronic  $\tau$  decay: 1 neutrino
  - $\blacksquare$  leptonic  $\tau$  decay: 2 neutrinos
  - total of 2-4 neutrinos



6/15

## **S Candidate Mass**

- missing energy and momentum from neutrinos lead to high spread in S mass reconstruction
- signal extraction using this variable is not feasible

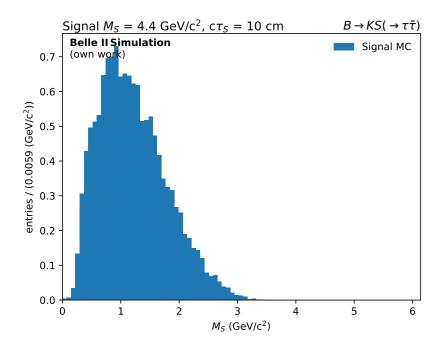



Figure:  $S_M$  plot

- use hadronic FEI to reconstruct the recoil
- calculate the recoil mass through the 4 momentum vector  $p^S = p^{beam} p^{B_{tag}} p^K$
- extract signal through the recoil mass

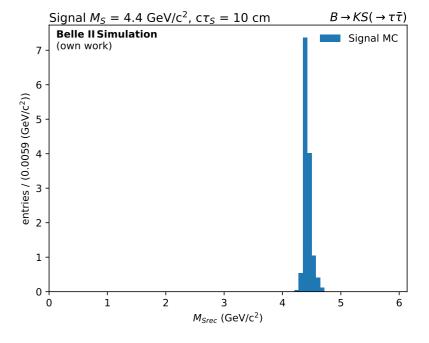



Figure: S<sub>Mrec</sub> plot



# **Displacement**

- requiring a displaced vertex comes with advantages and disadvantages for the analysis
- advantages
  - reduce background
  - only  $K_S$  and  $\Lambda^0$  are irreducable
- → high background rejection
- disadvantages
  - declining PID efficiency because time of flight concept does not work for displaced particles
  - only short tracks in outer CDC
  - traditional track selections can't be used
  - unable to reconstruct low lifetimes  $c\tau$  < 0.1 cm
- → low signal efficiency

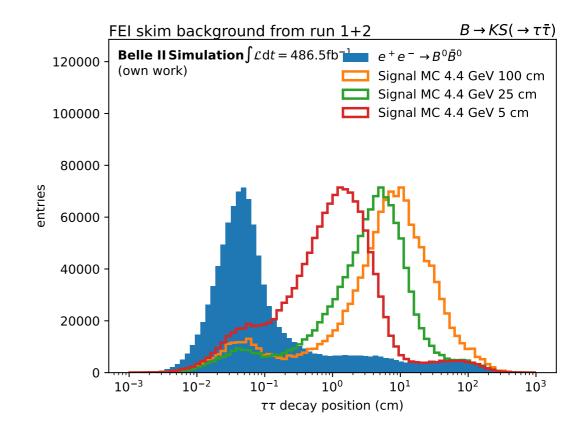



Figure: displacement histogram



## **ROE** selections

- ROE is everything not associated to  $B_{sig}$  or  $B_{tag}$  (from FEI) particle candidates
- number of good ROE tracks
  - | *dz* |< 4
  - $\blacksquare$  dr < 2
  - thetaInCDCAcceptance
  - pt > 0.1
- require 0 good ROE tracks
- → loose signal efficiency to
  - beam background
  - $\blacksquare$  3/5 prong  $\tau$  decays
- → reduce the number of background events

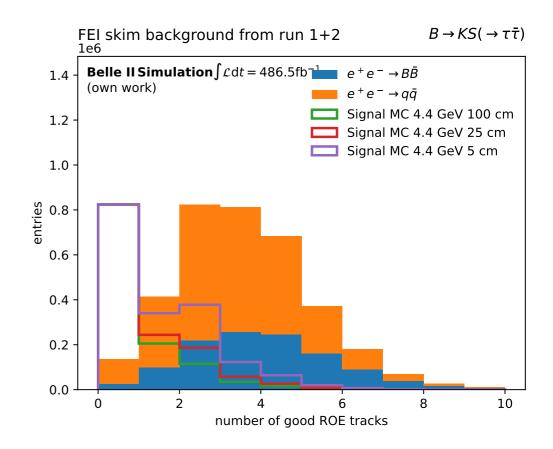



Figure: number of good tracks in the ROE

Institute of Experimental Particle Physics



9/15

# $\pi^0$ -veto

- lacktriangle background events often contain  $\pi^0$
- fill standard  $\pi^0$  list (eff30\_May2020)
  - only look at isolated photons
  - apply fakePhotonSuppression and beamBackgroundSuppression MVA
- lacktriangle compare number of reconstructed  $\pi^0$  and number of signal  $\pi^0$
- reject event if numbers don't match

■ using the  $M_S = 4.4 \, \text{GeV} \, c\tau = 10 \, \text{cm}$  as example to demonstrate the  $\pi^0$ -veto

|                      | without $\pi^0$ -veto |        | with $\pi^0$ -veto |        |
|----------------------|-----------------------|--------|--------------------|--------|
| channel              | signal                | back-  | signal             | back-  |
|                      | efficiency            | ground | efficiency         | ground |
| global               | 0.25 %                | 1201   | 0.197%             | 417    |
| ho channels          | 0.018 %               | 555    | 0.017 %            | 163    |
| none $\rho$ channels | 0.231 %               | 646    | 0.18%              | 254    |

Table: impact of the  $\pi^0$ -veto



## **Best Candidate Selection**

- $\blacksquare$  multiple candidates ( $\approx$  2.3) per event due to
  - FEI return multiple  $B_{tag}$  candidates, even after optimization cuts (for example cos(TBTO))
  - $\blacksquare$  bad PID on  $\tau$ -daughters due to displacement
  - $\blacksquare$  many different  $\tau$ -daughters
- best candidate selection is needed
- $\blacksquare$  decide for best  $B_{tag}$  and  $B_{sig}$  candidate individual
- short study showed that they are mostly independent
- B<sub>tag</sub>
  - using the signal probability of the FEI-Skim

- B<sub>sig</sub>
  - PID cuts decide (mostly) on  $\tau$  decay mode
  - $\blacksquare$  rest is handled by tree fit  $\chi$  probability



# Signal extraction

- extract the signal via the recoil mass
- perform a signal fit
- for now: count signal and background events in 95 % fit window
- calculate exclusion parameter
  - $\blacksquare$  assume  $N_{observed} = N_{background}$
  - calculate branching fraction upper limit through bayesian

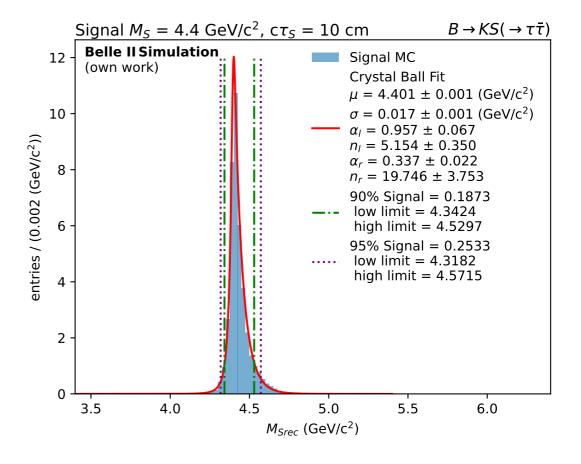



Figure: double-sided crystal ball signal fit



# Signal efficiency & background events

- count number of reconstructed signal events in 95 % fit window
- divide by number of generated signal events

|                            | $M_{\mathcal{S}}=3.6\mathrm{GeV}$ | $M_{\mathcal{S}}=4.0\mathrm{GeV}$ | $M_{\mathcal{S}}=4.4\mathrm{GeV}$ |
|----------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| $c\tau = 0.1  \mathrm{cm}$ | 0.0064 %                          | 0.0039 %                          | 0.0023 %                          |
| c	au= 1 cm                 | 0.12 %                            | 0.11 %                            | 0.11 %                            |
| $c	au=5\mathrm{cm}$        | 0.17 %                            | 0.18 %                            | 0.18%                             |
| $c	au=10\mathrm{cm}$       | 0.18 %                            | 0.2 %                             | 0.2 %                             |
| c	au= 25 cm                | 0.15%                             | 0.18 %                            | 0.2 %                             |
| $c	au=50\mathrm{cm}$       | 0.11%                             | 0.14 %                            | 0.16 %                            |
| c	au= 100 cm               | 0.07 %                            | 0.1 %                             | 0.11 %                            |

Table: signal efficiency

 count number of reconstructed background events in 95 % fit window

$$M_S = 3.6 \,\text{GeV}$$
  $M_S = 4.0 \,\text{GeV}$   $M_S = 4.4 \,\text{GeV}$ 

Table: number of background events

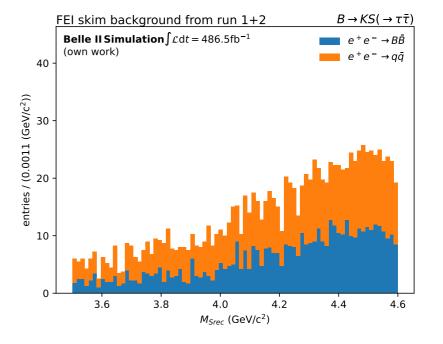



Figure: background distribution



# Sensitivity

- branching fraction upper limit calculated by counting
  - counting signal efficiency
  - counting background events
- perfect:
  - 100 % efficiency
  - 0 background
- very good:
  - 1 % efficiency
  - 0 background

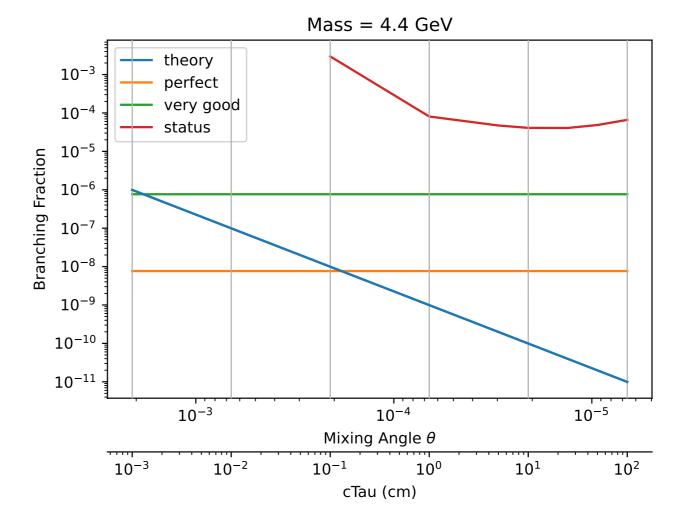



Figure: sensitivity



#### Conclusion

- analysis for  $B^+ \to K^+ S$  with  $S \to \tau^+ \tau^-$  set up and running
- using hadronic FEI and recoil mass to reconstruct S despite missing energy
- main selections set up
- around 200 expected background events
- signal efficiency of 0.2 % to 0.08 %
- not competitive for dark scalar analysis
- $\blacksquare$  different model with enhanced  $\tau$  coupling needed
- outlook
  - decide in signal extraction method
  - look into different theory models
  - analyze the neutral B channel



#### Tag Side cuts:

- Hadronic FEI
  - $-0.3 \, \text{GeV} < \Delta E < 0.3 \, \text{GeV}$
- $M_{bc} > 5.27 \, \text{GeV/c}^2$
- continuum suppression ROE Track
  - | *dz* |< 4 cm
  - $\blacksquare$  dr < 2 cm
  - thetaInCDCAcceptance
  - pt > 0.1 GeV/c
- continuum suppression ROE ECL
  - cluster N Hits > 1.5
  - | cluster Timing | < 200 ns
  - 0.2967 < cluster Theta < 2.6180
  - clusterE > 0.08 GeV & 1 cluster Reg
  - or clusterE > 0.03 GeV & 2 cluster Reg
  - or clusterE > 0.06 GeV & 3 cluster Reg
- continuum suppression cos(TBTO < 0.9)
- $B_{tag}$  SigProb > 0.01
- Best Candidate Selection on B<sub>taa</sub> SigProb

#### **ROE Cuts**

- n Good ROE tracks = 0
  - | dz | < 4
  - $\blacksquare$  dr < 2
  - thetaInCDCAcceptance
  - pt > 0.1

#### S Side Cuts

- S distance (3d) > 0.2 cm
- -0.5 < S cosAngleBetweenMomentumAndVertexVector < 0.918
- S dcosTheta > 0.1
- S significance of distance > 6
- S treeFit confidence level > 0.01
- BDT PID Electron > 0.5
- BDT PID Muon > 0.5
- global PID Pion > 0.5
- Best Candidate Selection on S treeFit confidence level

#### **Kaon Cuts**

- $\blacksquare$  abs(dz) < 4 cm
- $\blacksquare$  dr < 2 cm
- pt > 0.1 GeV/c
- global PID Kaon > 0.5
- $18^{\circ}$  < ThetaOnKLM<sub>K</sub> <  $155^{\circ}$

