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The GNN-ETM

Proposed upgrade for the L1 trigger ECL clustering system

One-shot algorithm for detecting and reconstructing clusters

8736 ECL crystals are grouped into 576 trigger cells (TC)

After energy and timing cuts, up to 32 TCs are used as input

Graph Neural Network (GNN) architecture because of unordered, very sparse input and irregular TC geometry

GravNet: GNN architecture that dynamically builds a graph from the input data and connects closest neighbors

8736 ECL crystals

∑

576 trigger cells (TC)

Energy and
timing cut

Up to 32 TCs as input
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Implementation
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Talk Isabel Haide: https://indico.belle2.org/event/14576/contributions/98794/
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Hardware Implementation

Network is developed
and trained in Python

using QKeras

Translation into High
Level Synthesis (HLS)

C++ code

Implementation on
FPGA hardware

Cosmics data taking has shown that the hardware is not doing exactly what our python model does

We have a simulation generated from the HLS C++ (C-SIM) that does exactly what the hardware does

No interaction with the hardware is necessary from our side to test our models

Python Logo: python.org, C++ Logo: isocpp, FPGA Icon: embien.com
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Fixed Point Calculation and Quantization

Python: Floating Point Arithmetics

Example: 16 bit floating point representation of 8.7510

0

Sign

1 0 0 1 0

Exponent

0 0 0 1 1 0 0 0 0 0

Mantissa

value = Sign ·Mantissa · 2Exponent

Wide range of representable numbers

Different precision in different ranges

Not feasible for FPGA implementation due to resource con-
straints

Hardware/C-SIM: Fixed Point Arithmetics

Numbers are represented using two’s complement

8.7510 = 8 + 0.5 + 0.25 = 23 + 2–1 + 2–2

= 0

–24

1 0 0 0

23 22 21 20

1 1

2–1 2–2

Example: Q5.2 fixed point number
– 7 bits total
– 5 bits for integer part (including sign bit)
– 2 bits for fractional part

Fixed precision for the entire quantization range
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Multiplication Example
8.7510 × 6.12510 = 53.593 7510

Floating Point

0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0

× 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0

= 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1

Result of 2 floating point numbers is another floating point
number (same bit width)

Multiple operations needed on FPGA: multiply mantissas,
add exponents, determine sign, normalize result

Little to no loss of precision

Fixed Point

0 1 0 0 0 1 1 (Q5.2)

× 0 1 1 0 0 0 1 (Q4.3)

= 0 1 1 0 1 0 1 1 0 0 1 1 (Q7.6)

After mutlipyling, additional bits are needed to keep precision

Very efficient implementation on FPGA: numbers are treated
as integers

Saturation and rounding to avoid exploding bit widths

Significant loss of precision

QKeras

Quantization extension to Keras that is trying to mimic fixed point calculations by artificially
quantizing the weights, inputs and outputs of each layer to fixed point numbers.
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C-SIMAgreement
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Agreement is not good enough

Why are some features so much worse than
others?
– Beta
– Energy
– Signal
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Dense Layers And Linear Layers

Example: 5 inputs, 4 outputs

Linear layer (LL):

1. Input features are multiplied with a weight ma-
trix.

2. Biases are added yielding the output features.

Dense layer (DL):

3. The output features are passed through an
activation function to introduce non-linearity.

Weights and biases are learned during training.
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Weights Of Output Dense Layer
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The colors indicate how close the weights
are to their quantization limits

The output features with the worst agree-
ment have weights that are very close to
their quantization limits
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Weights Of Output Dense Layer
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Debugging GravNet Block Layerwise

Graph is dynamically built by dense and linear layers
Neighboring nodes are connected
Their distances are weighted by an inverse exponential function.
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Agreement After The GravNetConv Layer
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Inside GravNetConv Layer

Graph is dynamically built by dense and linear layers
Neighboring nodes are connected
Their distances are weighted by an inverse exponential function.
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GravNetConv Distances BeforeWeighting

Graph is dynamically built by dense and linear layers
Neighboring nodes are connected
Their distances are weighted by an inverse exponential function.
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GravNetConv Distances AfterWeighting

Graph is dynamically built by dense and linear layers
Neighboring nodes are connected
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Agreement Before GravNetConv Layer

Graph is dynamically built by dense and linear layers
Neighboring nodes are connected
Their distances are weighted by an inverse exponential function.
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Agreement In First Dense Layer
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Reweighting In C-SIM

In QKeras we normalize the input features to the range [–1, 1].
In C-SIM we do not want to add a normalization layer, since it would add overhead.
Instead we modify the weights of the first dense layer to account for the normalization.

Fout = W ·
Fin – offset

scale
+ B → Fout =

W

scale
· Fin + (scale · B + offset)

Problem: The input features are quantized to 16 bit, but the weights of the first dense layer
are only quantized to 8 bit.
→ Much more rounding errors in the first dense layer in C-SIM than in QKeras.

We have to prescale the inputs in C-SIM as well
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Reweighting Fix

Before Reweighting Fix
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After Reweighting Fix

Still, QKeras is constantly higher than C-SIM

QKeras internally uses floating point numbers and artificially
quantizes the output by rounding it to the closest legal value

Flooring instead of rounding would describe the C-SIM behavior
better
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Rounding Fix

Before Rounding Fix
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Original C-SIMAgreement
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NewC-SIMAgreement
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Summary And Outlook

We have a working GNN-ETM that can find clusters in the ECL.

The FPGA hardware and C Simulation are doing what our QKeras model is doing.

We plan to have a faster final model ready for the upcoming data taking in october.
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