Challenges Of Hardware-Software Co-Design Of A Graph Neural Network For The ECL Trigger

Belle II Germany Meeting 2025

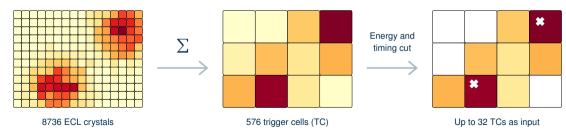
Frank Baptist* (frank.baptist@student.kit.edu), Isabel Haide*, Marc Neu*, Thomas Lobmaier*, Jürgen Becker* Torben Ferber*

^{*}Institute of Experimental Particle Physics (ETP)

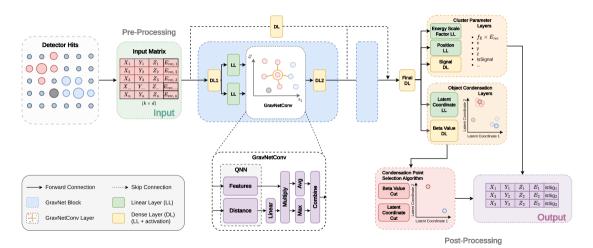
^{*}Institut fuer Technik der Informationsverarbeitung (ITIV) September 9, 2025

The GNN-FTM

- Proposed upgrade for the L1 trigger ECL clustering system
- One-shot algorithm for detecting and reconstructing clusters
- 8736 ECL crystals are grouped into 576 trigger cells (TC)
- After energy and timing cuts, up to 32 TCs are used as input
- Graph Neural Network (GNN) architecture because of unordered, very sparse input and irregular TC geometry
- GravNet: GNN architecture that dynamically builds a graph from the input data and connects closest neighbors



Implementation



Hardware Implementation

Python Logo: python.org, C++ Logo: isocpp, FPGA Icon: embien.com

Hardware Implementation

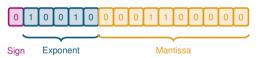
- Cosmics data taking has shown that the hardware is not doing exactly what our python model does
- We have a simulation generated from the HLS C++ (C-SIM) that does exactly what the hardware does
- No interaction with the hardware is necessary from our side to test our models

Python Logo: python.org, C++ Logo: isocpp, FPGA Icon; embien.com

Fixed Point Calculation and Quantization

Python: Floating Point Arithmetics

Example: 16 bit floating point representation of 8.75₁₀



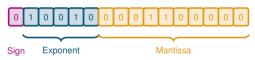
value = Sign · Mantissa · 2 Exponent

- Wide range of representable numbers
- Different precision in different ranges
- Not feasible for FPGA implementation due to resource constraints

Fixed Point Calculation and Quantization

Python: Floating Point Arithmetics

Example: 16 bit floating point representation of 8.75₁₀



- Wide range of representable numbers
- Different precision in different ranges
- Not feasible for FPGA implementation due to resource constraints

Hardware/C-SIM: Fixed Point Arithmetics

Numbers are represented using two's complement

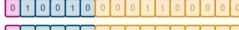
$$8.75_{10} = 8 + 0.5 + 0.25 = 2^3 + 2^{-1} + 2^{-2}$$

- Example: Q5.2 fixed point number
- 7 bits total
- 5 bits for integer part (including sign bit)
- 2 bits for fractional part
- Fixed precision for the entire quantization range

Multiplication Example

$$8.75_{10} \times 6.125_{10} = 53.59375_{10}$$

Floating Point

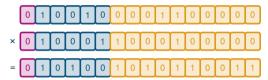


- Result of 2 floating point numbers is another floating point number (same bit width)
- Multiple operations needed on FPGA: multiply mantissas, add exponents, determine sign, normalize result
- Little to no loss of precision

Multiplication Example

 $8.75_{10} \times 6.125_{10} = 53.59375_{10}$

Floating Point



- Result of 2 floating point numbers is another floating point number (same bit width)
- Multiple operations needed on FPGA: multiply mantissas, add exponents, determine sign, normalize result
- Little to no loss of precision

Fixed Point

- After mutlipyling, additional bits are needed to keep precision
- Very efficient implementation on FPGA: numbers are treated as integers
- Saturation and rounding to avoid exploding bit widths
- Significant loss of precision

Multiplication Example

 $8.75_{10} \times 6.125_{10} = 53.59375_{10}$

Floating Point

- Result of 2 floating point numbers is another floating point number (same bit width)
- Multiple operations needed on FPGA: multiply mantissas. add exponents, determine sign, normalize result
- Little to no loss of precision

Fixed Point

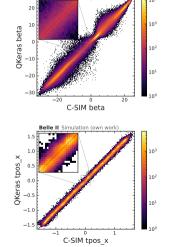
- After mutlipyling, additional bits are needed to keep precision
- Very efficient implementation on FPGA: numbers are treated as integers
- Saturation and rounding to avoid exploding bit widths
- Significant loss of precision

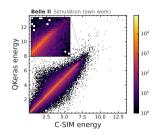
QKeras

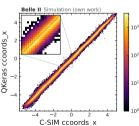
Quantization extension to Keras that is trying to mimic fixed point calculations by artificially quantizing the weights, inputs and outputs of each layer to fixed point numbers.

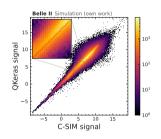
C-SIM Agreement

Belle II Simulation (own work)









- Agreement is not good enough
- Why are some features so much worse than others?
 - Beta
 - Energy
 - Signal

Dense Layers And Linear Layers

Example: 5 inputs, 4 outputs

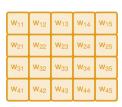
Linear layer (LL):

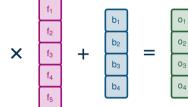
- Input features are multiplied with a weight matrix.
- 2. Biases are added yielding the output features.

Dense layer (DL):

3. The output features are passed through an activation function to introduce non-linearity.

Weights and biases are learned during training.



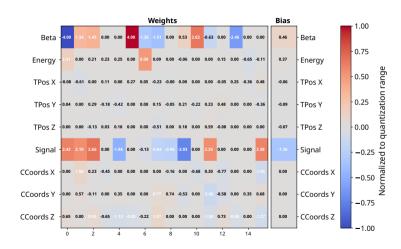


Weight Matrix

Input Features Bias Ou

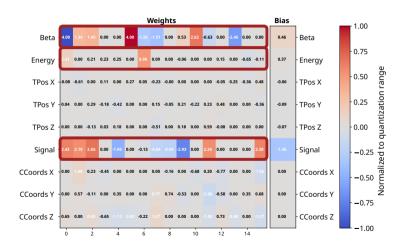
Bias Output Features

Weights Of Output Dense Layer



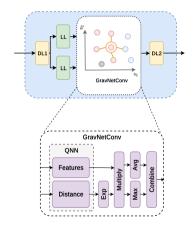
- The colors indicate how close the weights are to their quantization limits
- The output features with the worst agreement have weights that are very close to their quantization limits

Weights Of Output Dense Layer

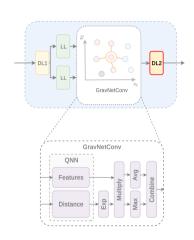


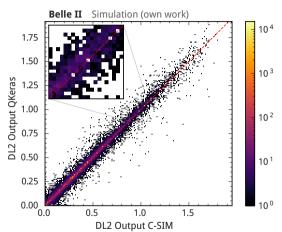
- The colors indicate how close the weights are to their quantization limits
- The output features with the worst agreement have weights that are very close to their quantization limits

Debugging GravNet Block Layerwise

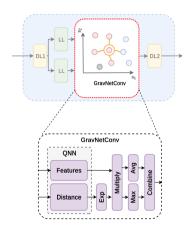


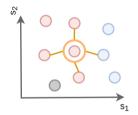
Agreement After The GravNetConv Layer





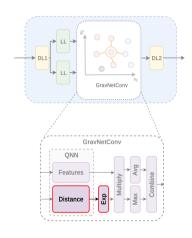
Inside GravNetConv Layer

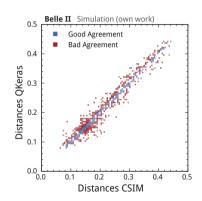




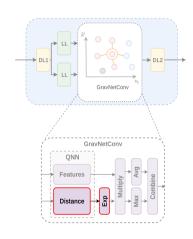
- Graph is dynamically built by dense and linear layers
- Neighboring nodes are connected
- Their distances are weighted by an inverse exponential function.

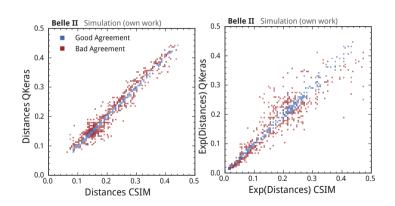
GravNetConv Distances Before Weighting



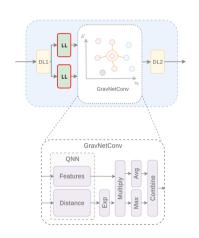


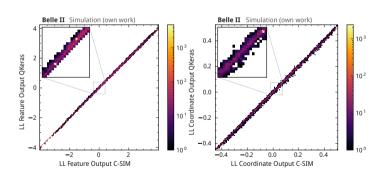
GravNetConv Distances After Weighting



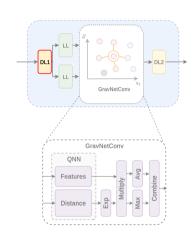


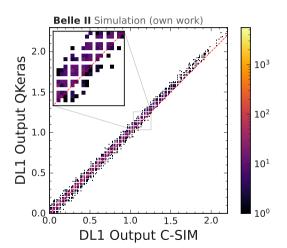
Agreement Before GravNetConv Layer



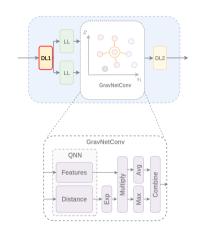


Agreement In First Dense Layer





Reweighting In C-SIM

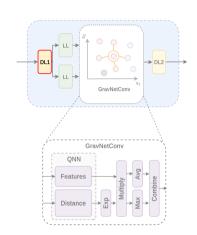


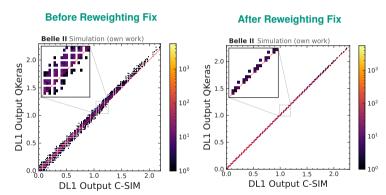
- In QKeras we normalize the input features to the range [-1, 1].
- In C-SIM we do not want to add a normalization layer, since it would add overhead.
- Instead we modify the weights of the first dense layer to account for the normalization.

$$F_{out} = W \cdot \frac{F_{in} - offset}{scale} + B \rightarrow F_{out} = \frac{W}{scale} \cdot F_{in} + (scale \cdot B + offset)$$

- Problem: The input features are quantized to 16 bit, but the weights of the first dense layer are only quantized to 8 bit.
 - ightarrow Much more rounding errors in the first dense layer in C-SIM than in <code>QKeras</code>.
- We have to prescale the inputs in C-SIM as well

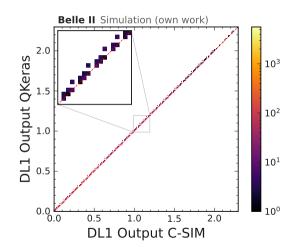
Reweighting Fix



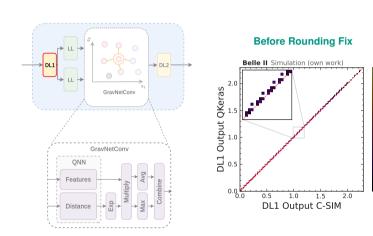


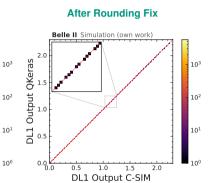
After Reweighting Fix

- Still, QKeras is constantly higher than C-SIM
- OKeras internally uses floating point numbers and artificially quantizes the output by rounding it to the closest legal value
- Flooring instead of rounding would describe the C-SIM behavior better

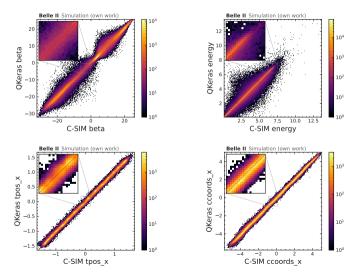


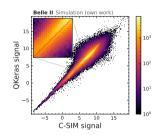
Rounding Fix



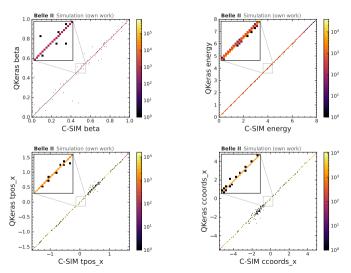


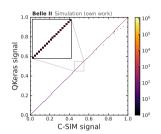
Original C-SIM Agreement





New C-SIM Agreement





Summary And Outlook

- We have a working GNN-ETM that can find clusters in the ECL.
- The FPGA hardware and C Simulation are doing what our OKeras model is doing.
- We plan to have a faster final model ready for the upcoming data taking in october.

