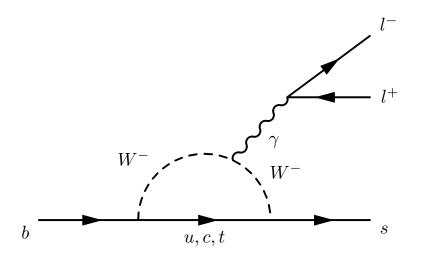
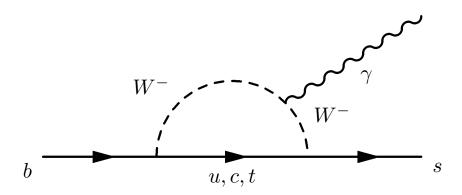


MEASUREMENTS OF ELECTROWEAK PENGUIN AND RADIATIVE B DECAYS AT BELLE AND BELLE II

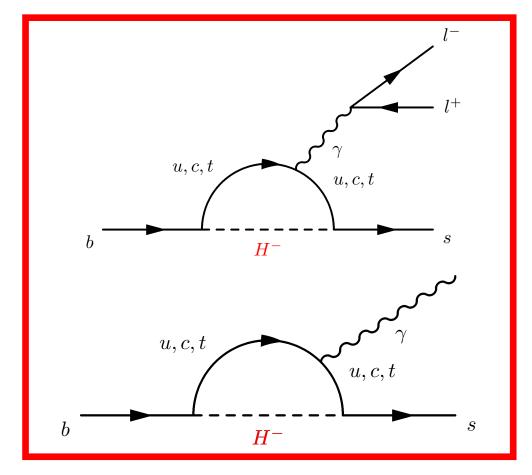
Noah Brenny (Iowa State University)
On behalf of Belle and Belle II collaborations

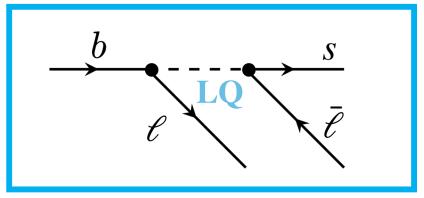



Lake Louise Winter Institute 2025

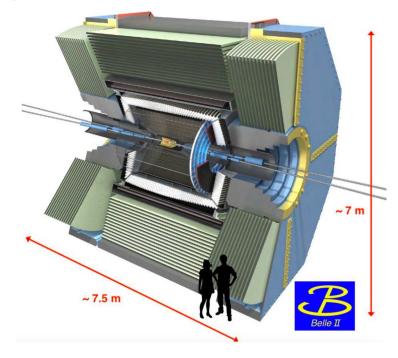
March 5th, 2025

Introduction


- FCNC processes $b \rightarrow s(d)$ are forbidden in SM at tree level
- Low BFs due to CKM and GIM suppression

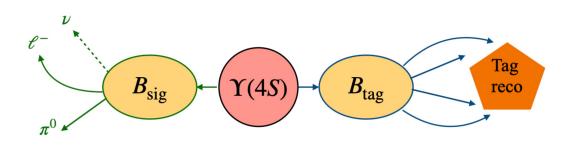


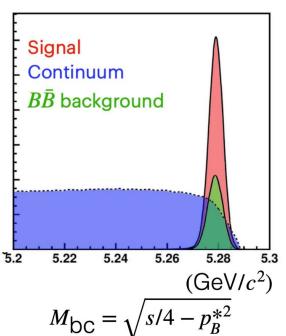
Introduction

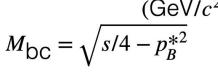

- FCNC processes $b \rightarrow s(d)$ are forbidden in SM at tree level
- Low BF's due to CKM and GIM suppression
- Look for enhancements in FCNC due to NP contributions
 - Weaker GIM cancellations due to new particles in loop corrections
 - New interactions at tree level
 - Channels with 3^{rd} generation are particularly interesting due to connections to anomalies in semitaunic decays $(R(D^{(*)}))$

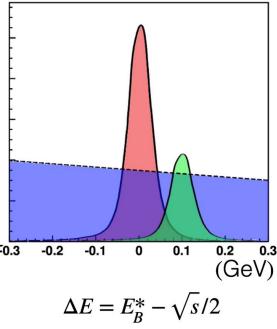
Belle and Belle II environment

- Threshold $B\bar{B}$ production at $\Upsilon(4S)$ resonance
 - Relatively clean environment
- Near 4π detector coverage
 - Full event reconstruction
- Well-equipped to measure decays with missing energy, neutrals in the final state, inclusive measurements

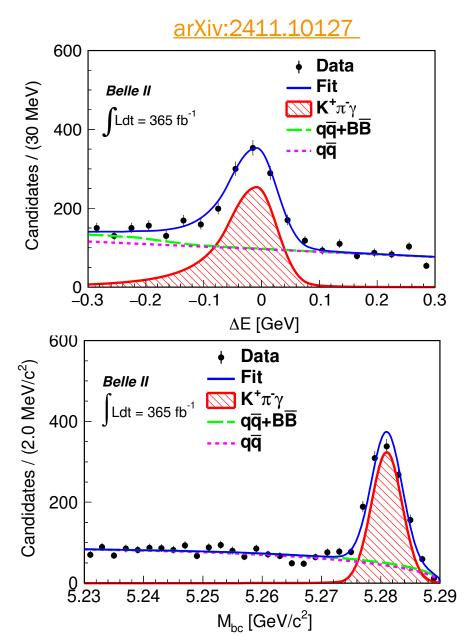



Today's results are from the datasets:


	Luminosity [fb ⁻¹]	
Belle	711	
Belle II	365	


B-factory experimental techniques

- Kinematics constrained from knowledge of initial state
- B-meson tagging using hadronic or semileptonic *B*-meson decays

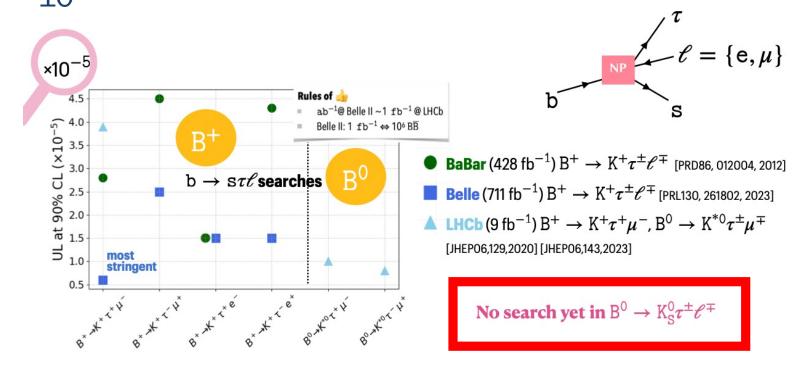


Measurement of $B \to K^* \gamma$ with Belle II

- $K^{*0} \to K^+\pi^-, K^{*0} \to K_S^0\pi^0, K^{*+} \to K^+\pi^0, K^{*+} \to K_S^0\pi^+ \text{ modes}$
- Dominant background from continuum with $\pi^0/\eta \to \gamma\gamma$ faking hard photon
- Dedicated MVAs to suppress π^0/η and continuum backgrounds
- 2D unbinned fit in $M_{\rm bc}$ and ΔE
- Precision measurement with ~4000 signals

Measurement of $B \to K^* \gamma$ with Belle II

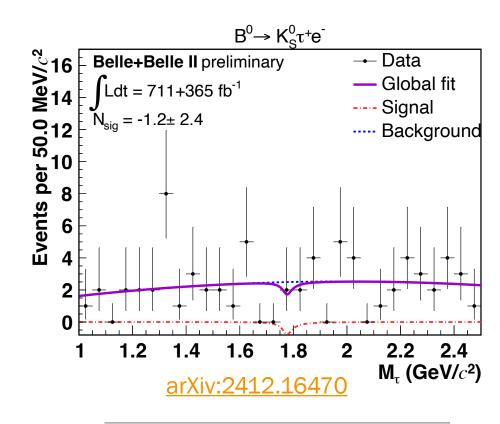
- Comparable statistical and systematic uncertainties for the BFs
- Dominant systematic from π^0 reconstruction efficiency (3.9%)
- CP and isospin asymmetries: statistical uncertainty dominates
- Isospin asymmetry consistent with SM expectation and previous Belle and BaBar measurements


Channel	$\mathcal{B} \ (10^{-5})$	$\mathcal{A}_{CP}~(\%)$
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	$4.14 \pm 0.10 \pm 0.11$	$-3.3 \pm 2.3 \pm 0.4$
$B^0 \to K^{*0} [K_S^0 \pi^0] \gamma$	$4.07 \pm 0.33 \pm 0.23$	_
$B^0 o K^{*0} \gamma$	$4.14 \pm 0.10 \pm 0.10$	$-3.3 \pm 2.3 \pm 0.4$
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	$3.97 \pm 0.17 \pm 0.20$	$+1.7 \pm 4.0 \pm 0.9$
$B^+ \to K^{*+} [K_S^0 \pi^+] \gamma$	$4.06 \pm 0.18 \pm 0.13$	$-3.5 \pm 4.3 \pm 0.7$
$B^+ \to K^{*+} \gamma$	$4.02 \pm 0.13 \pm 0.13$	$-0.7 \pm 2.9 \pm 0.6$
	$\Delta_{0+}~(\%)$	$\Delta \mathcal{A}_{CP}$ (%)
$B o K^* \gamma$	$+5.0 \pm 2.0 \pm 1.0 \pm 1.1$	$+2.6 \pm 3.8 \pm 0.7$

Search for $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ with Belle + Belle

- $b \to c\tau l$ anomalies and $B(B^+ \to K^+ \nu \bar{\nu})$ excess can be explained by a new heavy particle coupling differently to 3rd generation leptons
- BSM extensions predict $b \rightarrow s\tau l$ BFs near current experimental limits ~ 10-5

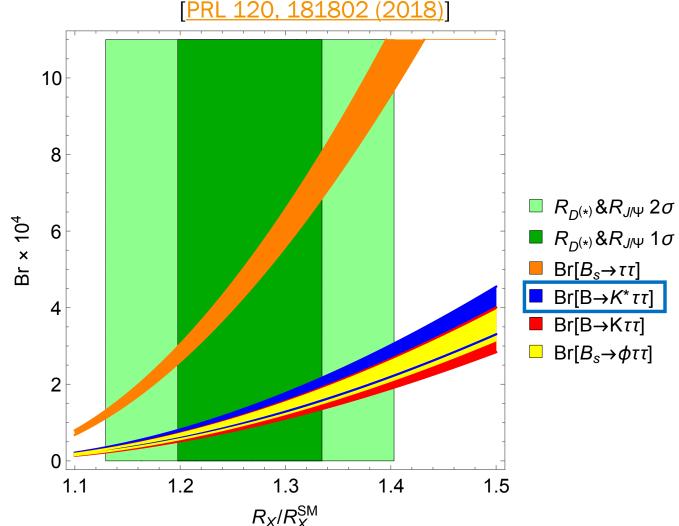
Search for $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ with Belle + Belle II



Challenges:

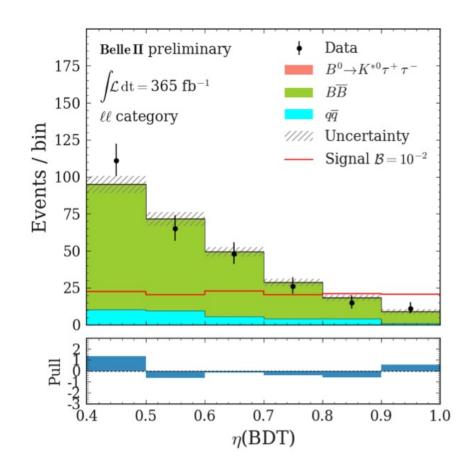
- Forbidden decay
- Large backgrounds
- \blacksquare Hadronic tag companion B_{tag}
- Four channels: $l \in \{e^+, e^-, \mu^+, \mu^-\}$
- Reconstruct one-prong τ decays into μ , e, or π : >70% of τ decays
- One τ in final state $\Rightarrow M_{\rm recoil}^2 = m_{\tau}^2 = \left(p_{e^+e^-} p_{K_S^0} p_l p_{B_{\rm tag}}\right)^2$
- Dedicated veto for semileptonic decays and BDT for other backgrounds

Comparable to best existing limits First search for $B^0 o K^0_S au^\pm l^\mp$ decays



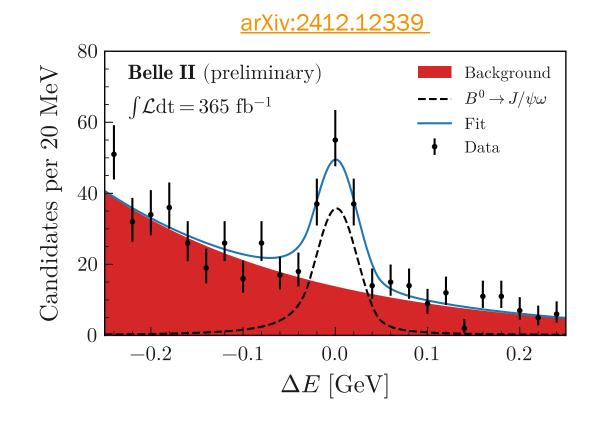
			$\mathcal{B}(10^{-5})$	
Channels	$\epsilon(10^{-4})$	$N_{ m sig}$	Central value	UL
$B^0 \to K_S^0 \tau^+ \mu^-$	1.7	-1.8 ± 3.0	$-1.0 \pm 1.6 \pm 0.2$	1.1
$B^0 \to K_S^0 \tau^- \mu^+$	2.1	2.6 ± 3.5	$1.1\pm1.6\pm0.3$	3.6
$B^0 \to K^0_S \tau^+ e^-$	2.0	-1.2 ± 2.4	$-0.5 \pm 1.1 \pm 0.1$	1.5
$B^0 \to K_S^0 \tau^- e^+$	2.1	-2.9 ± 2.0	$-1.2 \pm 0.9 \pm 0.3$	0.8

Search for $B^0 \to K^{*0}\tau\tau$ with Belle II


- BF in SM of 1×10^{-7}
- NP models describing $b \rightarrow c\tau l$ predict $\times 10^4$ BF enhancement
- Experimentally very challenging
 - Low efficiency
 - Large missing energy
 - Low K^{*0} momentum
 - No signal peaking kinematic observable due to 2+ ν final state
- Most recent limit from Belle (711 fb⁻¹) BR < 3.1×10^{-3} @ 90% CL [PRD 108 011102 (2023)]

Search for $B^0 \to K^{*0}\tau\tau$ with Belle II

- Hadronic tag companion B
- au ττ reconstructed in $ll, l\pi, \pi\pi, \rho\pi$ categories
- BDT trained using missing energy, residual energy in calorimeter, $M(K^{*0}, \tau \text{ track})$, dilepton mass, etc.
- Fit BDT score simultaneously across categories



Better tagging + more categories + BDT \rightarrow Twice better limit than Belle with half the statistics Most stringent limit on $b \rightarrow s\tau\tau$ transition

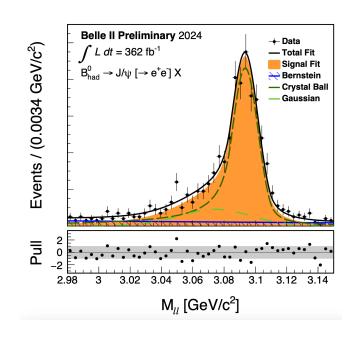
Measurement of $B^0 \to J/\psi \omega$ with Belle II

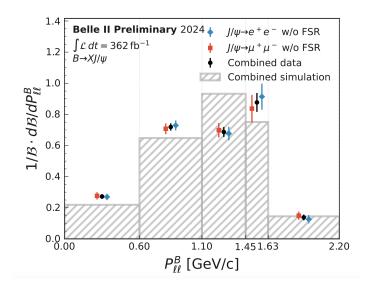
- Color-suppressed tree diagrams with $b \rightarrow c\bar{c}d$ transitions
- TDCPV mode, control mode for $b \rightarrow dll$ decays at B-factories
- BDT to reject dominant $B^0 \to J/\psi X$ backgrounds
- First observation (6.5σ) and consistent with WA

$$BF(B^0 \to J/\psi \omega) = 2.16 \pm 0.30 \pm 0.14$$

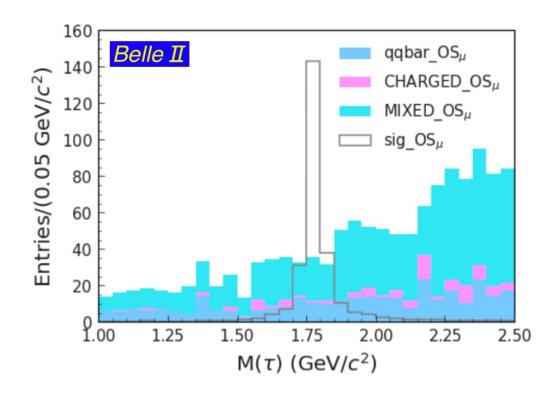
Summary

- Belle and Belle II provide unique opportunities for studies of $b \to s$ transitions, including channels with third generation couplings
- $B \to K^* \gamma$ BF and A_{CP} precision measurements
- First search for $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ with sensitivity similar to adjacent LFV channels
- Best limits for $B^0 \to K^{*0} \tau \tau$
- First observation of $B^0 \to J/\psi \omega$


Backup


Measurement of inclusive $B \rightarrow J/\psi X$ with Belle II

- Useful for (semi) inclusive $B \to Xll$ and $B \to X\nu\nu$ measurements
- lacktriangle Differential measurement of the J/ψ momentum and polarization
- Hadronic tag companion B
- Fit yields with $M(l^+l^-)$
- First separate BF measurement of B^0 and B^+


BF(
$$B^0 \to J/\psi X$$
) = (0.95 ± 0.03 ± 0.04)
BF($B^+ \to J/\psi X$) = (1.19 ± 0.03 ± 0.05)

Search for $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ with Belle + Belle II

• One τ in final state $\rightarrow M_{\rm recoil}^2 = m_{\tau}^2 = \left(p_{e^+e^-} - p_{K_S^0} - p_l - p_{B_{\rm tag}}\right)^2$

