AN EXPLORER'S INTRODUCTION TO PARTICLE PHYSICS

VIRGINIA TECH

Tommy Lam 2025 June 23

40	
30	
20	<u></u>
10	
0	
-10	
-20	
-30	
-40	

AIMS OF THIS TALK

What are the goals of particle physics? What are (elementary) particles? What is our best theory of particles so far?

What are the goals of particle physics?

GOAL 1: UNDERSTANDING WHAT MATTER IS MADE OF

PC: <u>http://www.molecularrecipes.com/ice-cream-class/making-ice-cream-steps/?no_redirect=true</u>, Wikipedia, <u>https://naturphilosophie.co.uk/the-standard-model/</u>

- Long history of understanding what matter is made of
- ► As technology progressed (ex. microscopes), we were able to delve

GOAL 1: UNDERSTANDING WHAT MATTER IS MADE OF

nucleus $\sim 10^{-12} cm$

atom ~ $10^{-8} cm$

► Good contenders for 'fundamental particles': electrons and quarks!

PC: <u>https://naturphilosophie.co.uk/the-standard-model/</u>

Proton & Neutron

quark <10⁻¹⁶cm

 $\sim 10^{-13} cm$

GOAL 2: UNDERSTANDING THEIR PROPERTIES

How our understanding of the proton has changed over the years

PC: https://www.forbes.com/sites/startswithabang/2021/03/18/what-rules-the-proton-quarks-or-gluons/, https://cerncourier.com/a/the-most-precise-picture-of-the-proton/

What are particles? What are their properties?

WHAT ARE PARTICLES? – CLASSICAL PICTURE

- ► Matter/energy concentrated into finite space with definite boundaries
- ► At a fixed location
- Motion described deterministically

Sir Isaac Newton

Albert Einstein

Gentle Reminder of Young's Double-Slit Experiment

Thomas Young

Appearance of

Note: Even in the case of single electrons we still get this pattern!

Davisson and Gremer

George Paget Thomson

- Propagation represented via wave functions (particle-wave duality)
- Not necessarily located at a specific position (Heisenberg uncertainty principle, $\Delta p \Delta x \ge \hbar/2$)
- Discrete (quantum) properties (ex. charge, spin)

Louis de Broglie

Erwin Schrödinger

Neils Bohr

Werner Heisenberg 13

DISCRETE PROPERTIES OF PARTICLES

- Properties that distinguish one particle from another
- Charge: Intrinsic property that informs how it interacts with forces (ex. E&M) or other particles with similar properties
 - $\blacktriangleright \pm e = electrons, protons$
 - \blacktriangleright ±*e*/3, ±2*e*/3: quarks
- > Spin: An intrinsic property in the form of angular momentum
 - Fractional Spin (Fermions): electrons, quarks
 - Integer Spin (Bosons): photons, gluons, Higgs

Note: Unfortunately, they're not actually spinning...

DESCRIBING PARTICLE PROPAGATION

- Math of <u>Quantum Field Theory</u> is encoded in Feynman Diagrams
- ► Ex. To describe electrons interacting with one another...

Richard Feynman

Fermions (matter)

up quark

Quark

Lepton

charm quark

top quark

bottom quark

electron

electron

neutrino

down quark

strange quark

muon

muon neutrino

tau

tau neutrino

The Standard Model of Particles Physics

FERMIONS

► Quarks:

- Spin-1/2 with electric charge = $\pm 2e/3$ or $\pm e/3$
- Contain a 'color' charge which binds them to composite states (ex. protons, neutrons)
- Leptons:
 - > Spin-1/2 particles with integer charges $(\pm e, 0)$
 - Electron-like fermions (with different masses)
 - ► Neutrinos: Little neutral versions of the electron-like fermions

Fermions (matter)

Three Generations?

ANTI-FERMIONS?

- ► Tied with every fermion is an "anti-matter" counterpart with
 - ► The same mass and spin
 - Opposite electric/color charge
- > Where does anti-matter come from?
 - Dirac Equation, part of QFT, predicts antimatter naturally!

► <u>Summary of the anti-matter history...</u>

Anti-fermions (anti-matter)

BOSONS (FORCE CARRIERS & HIGGS)

- > Photon: Force carrier for the electromagnetic force (associated with electric charge)
- ► Gluons: Force responsible for **binding** quarks together (associated with color charge)
- > Weak Force (W^{\pm}/Z) : Massive bosons responsible for nuclear/radioactive decays and "flavor changes"

Satyendra Nath Bose

- Higgs boson: Spin-0 particle associated with the mechanism that imparts mass to other elementary particles
 - Buzz word: <u>Spontaneous Symmetry</u> Breaking

GOING BEYOND THE STANDARD MODEL (SOME UNANSWERED QUESTIONS)

- > Why is gravity so much weaker than the other forces? (Hierarchy Problem)
- > Why are there three generations of quarks and leptons?
- > Why are there three spatial dimensions? (String Theory)
- ► What is the neutrino mass and where does it come from? And its ordering?
- ➤ Why is there so much more matter than anti-matter, when the SM predicts matter and anti-matter should be mostly created in (almost) equal parts?
 - See Flavor Physics talk for more insight
- ➤ What is dark matter? And, what is dark energy?
- ► Why is there no CP violation in the strong sector? (Strong CP problem)
 - Ask a friendly theorist or dark matter expert for more details

SUMMARY

- Particle physics is the study of fundamental matter and its properties
- Particles are point-like bundles of energy that
 - propagate like waves
 - have discrete quantum numbers describing them
- Our best leading theory is the Standard Model (but still many more things to discover)

Fermions (matter)

TSUKUBA

Thank you for your attention!

Questions?

INCASE PEOPLE HAVE QUESTIONS

WHY DO WE CALL IT COLOR CHARGE?

> The 'algebra' that describes gluons happens to align with how we think about color ► If you want to see more details, see either "quantum chromodynamics" or SU(3)

HOW DO WE KNOW THAT 'COLOR CHARGE' EXISTS?

- > From models of e^+e^- collisions across a wide range of energies, we notice that:
 - > Hadronic cross-sections cannot be understood without an additional charge
 - > quarks are observed as hadronic jets with the angular distribution of spin-1/2 particles
 - ► Gluons are seen as a third jet

Ratio R of hadronic to point-like cross-section in e^+e^- annihilation as a function of \sqrt{s} (Yao et al. 2006, by permission of Particle Data Group and the Institute of Physics).

HOW DO WE KNOW THAT 'COLOR CHARGE' EXISTS?

- In addition, there are also some particles whos (valence) quarks are 3 of the same quark species
 - $\blacktriangleright \Delta + + = uuu$
 - $\blacktriangleright \Delta = ddd$

 $\blacktriangleright \Omega - = sss$

- Because of the Pauli exclusion principle, there must be something else that distinguishes these particles from one another
 - ► It cannot be spin and electric charge
 - Answer: 'color' charge!

q = -1

Murray Gell-Man

QUANTUM FIELD THEORY

- > Our best tool to describe the propagation of elementary particles
- Simplest Examples:
 - ► Klein-Gordon Equation: $(\partial^2 m^2 c^2)$
 - ► Dirac Equation: $(i\partial mc)\psi$

For comparison, Schrödinger Equation

$$(e^2/\hbar^2) \phi = 0 \qquad \rightarrow E^2 - \vec{p}^2 - m^2 = 0$$

 $\phi = 0 \qquad \rightarrow E \mp (\vec{\alpha} \cdot \vec{p} + \beta m) = 0$

> Photons and Matter : $-(1/4)F^{\mu\nu}F_{\mu\nu} + \bar{\psi}(iD - mc)\psi \rightarrow$ Maxwell's Equation

$$h: \left(\frac{-\hbar^2}{2m}\vec{\partial}^2 + V\right)\psi = E\psi \to KE + PE = E$$

THE RELATION BETWEEN FEYNMAN DIAGRAMS AND QFT

- Starting point: Equations as shown in [math slide] are terms in a Lagrangian density L
 - ► These diagrams come from relating initial state $|i\rangle$ with final state $|f\rangle$ via some evolution operator *S* via $\langle f|S|i\rangle$. These S's roughly come from interaction terms (ex. $\mathscr{L}_{QED} \ni - e\bar{\psi}\gamma^{\mu}A_{\mu}\psi$)
 - ► By summing over all paths a particle can take $\left(\exp\left(\frac{i}{\hbar}\int \mathscr{L}dt\right)\right)$ and terms in this summation

correspond to S

STATISTICS

- > For many body systems, two types of statistics for non-interacting quantum systems:
 - Fermi-Dirac For identical particles, they must obey the Pauli-exclusion principle
 - Bose-Einstein: Allows for identical particles to occupy the same state
- Spin-Statstics Theorem
 - Properties of spin are directly related to their many-body statistics
 - ► Fermi-Dirac —> Fermions (fractional spins)
 - ► Bose-Einstein —> Bosons (integer spins)

Paul Dirac Enrico Fermi

Satyendra Nath Bose Albert Einstein

WHAT IS SPONTANEOUS SYMMETRY BREAKING

- Symmetry Breaking: When our system has an intrinsic symmetry and 'breaks' it

Yoichiro Nambu, Jeffery Goldstone, Peter Higgs

Explicit: When something external perturbs a system to break some symmetry Spontaneous: When a (vacuum) state of a symmetric system becomes not symmetric

➤ In SM, Higgs acts to modify the vacuum state of Ws/Zs and the result states mass

ELECTRO-WEAK?

- 'electroweak' force.
 - ► Why? <u>Symmetry Breaking</u>!
 - separate into the W^{\pm}/Z and γ , which are the weak and photon forces.
 - (related to Z) to E&M charge via:
 - \blacktriangleright electric charge = weak isospin + 1/2 x weak hypercharge

SU(2) generator comes in as weak isospin

Steven Weinberg, Abdus Salam, Sheldon Glashow

➤ In the SM, we typically think about the electromagnetic and weak force as the same

$$\left(egin{array}{c} \gamma \ Z^0 \end{array}
ight) = \left(egin{array}{c} \cos heta_{
m W} & \sin heta_{
m W} \ -\sin heta_{
m W} & \cos heta_{
m W} \end{array}
ight)$$

► At high energies, $\mathscr{L}_{EW} \ni W$ and B boson terms. At low energies, these terms

► We can relate the "weak isospin" (charge related to W) and "weak hypercharge"

 \blacktriangleright Technical Jargon: Coming from SU(2) x U(1), hypercharge comes from the U(1) generator,

STANDARD MODEL LAGRANGIAN

MATTER CONTENT OF THE UNIVERSE

Standard Model of Elementary Particles

[1]: Wikipedia Commons. "File: Standard Model of Elementary Particles.svg-Wikimedia Commons, the free media repository" (2020) - out of date? [2]: <u>https://wmap.gsfc.nasa.gov/universe/uni_matter.html</u>

STRONG CP PROBLEM

- > In the SM lagrangian, there is nothing stopping (massive) quarks from having complex phases and flavor violation via the strong force
 - CKM mechanism is described in the weak sector

- that breaks the CP symmetry (new particle called axion)

CP Violating phase

Chiral Transformation $\psi'=e^{ilpha\gamma_5/2}\psi,~~ar\psi'=ar\psi e^{ilpha\gamma_5/2},$

► In order to solve this, theorist have tried to introduce a pseudo-Goldstone mode

> An attractive dark matter candidate due to its relevance to the Standard Model

