

Physics of Particle Flavors

Belle II Explorer

Valeria Fioroni 23 June 2025

What is flavor?

Flavor: The type of quark or lepton.

Belle II Explorer - B2SW 2025

Why do we study flavor physics?

To answer open questions of the Standard Model, for example:

The Big Bang should have produced the same amount of matter and antimatter

particle-antiparticle pair production from energetic radiation

particle-antiparticle annihilation into energy

But the Universe is not empty, and everything we see is made mostly of matter:

Where did all the antimatter go?

One key ingredient: *CP* violation

• Charge Conjugation C:

➤ Changes the sign of a particle internal quantum numbers (charge, color, flavor, etc.), e.g. $e^- \rightarrow e^+$, $u \rightarrow \overline{u}$

- **Parity** P, or *spatial inversion*: $\Rightarrow \vec{x} \rightarrow -\vec{x}, \ \vec{p} \rightarrow -\vec{p} \text{ but } \vec{S} \rightarrow \vec{S}$
- If particles and antiparticles <u>behave differently</u>, *CP* is violated

Interaction of gauge bosons with fermions:

• *Electromagnetic interaction* vertices:

Interaction of gauge bosons with fermions:

• *Strong interaction* vertex:

➢ No flavor change

Interaction of gauge bosons with fermions:

• *Z*⁰ *weak interaction* vertices:

➢ No flavor change

Interaction of gauge bosons with fermions:

• W^{\pm} weak interaction vertices:

We will focus on these *Flavor Changing Interactions*

Flavor Changing Interactions

• <u>Lepton vertices</u>

- Flavor changing processes within the same generation*
- **Same strength** for all generations

*but neutrino oscillations have been observed: <u>Discovery of Atmospheric Neutrino Oscillations</u> 2015 Nobel Prize

Flavor Changing Interactions

• <u>Quark vertices</u>:

- Flavor changing processes across generations, between up-type quarks (u,c,t) and down-type quarks (d,s,b)
- Strength of the interaction proportional to V_{ij}, elements of the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix V

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CKM Matrix

- The CKM matrix *V* is non-diagonal, and describes mixing between the generations of quarks
 - ➢ 1963: Cabibbo introduced the idea of mixing between the first and second generation of quarks (only *u*, *d*, *s* were known at the time)
 - 1972: Kobayashi and Maskawa extended this idea, predicting the existence of a third generation of quarks (t, b), and introducing the CKM matrix, to explain CP violation observed in some particle decays (Kaon system)

CP Violation in the Standard Model

Measurement of CKM matrix elements

- *CP* Violation predicted by the SM is orders of magnitude too small to account for matter-antimatter asymmetry of the Universe
- Precise measurements of *V* can be sensitive to new sources of *CP* violation from new particles and interactions

The *b* quark plays a special role in the determination of the CKM matrix element magnitudes

B-Factories

• Collision of e^+ and e^- at $E_{CMS} = 10.58 \text{ GeV}$

•
$$B^0$$
 meson = $d\overline{b}$
• B^+ meson = $u\overline{b}$

Production of large and clean $B\overline{B}$ samples, that can be used for flavor physics studies

• Experiments at the B-Factories:

BaBar at SLAC, U.S. 1999-2008

Belle at KEK, Japan 1999-2010 Belle II Explorer - B2SW 2025

- Ongoing
- Belle detector upgrade
- Goal: ~50x the amount of data collected by Belle

CP violation in the *B*-meson system

Belle and BaBar experiments first **observed CP violation in** *B***-meson** system in 2001, proving Kobayashi and Maskawa scheme for CP violation in the Standard Model.

Kobayashi and Maskawa were **awarded the Nobel Prize** in 2008, *"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"*

Summary

- We introduced the concept of **flavor** for the Standard Model fermions
- Charged current weak interactions (W[±]) change the flavor of fermions and violate CP, the particle-antiparticle symmetry (CKM mechanism)
- While the Standard Model has been remarkably successful, it fails at explaining some experimental observations (e.g. **matter antimatter asymmetry**)
- To search for signs of **new particles and interactions beyond the Standard Model**, we rely on precise measurements, like the ones that can be performed at **flavor physics experiments** like **Belle II**.

Belle II Explorer - B2SW 2025

Backup

Why "flavor"?

- The term *flavor* was first used in particle physics in the context of the quark model of hadrons.
- It was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins ice-cream store in Pasadena.
- Just as ice cream has both color and flavor so do quarks. (Fritzsch, 2008)
 Rev. Mod. Phys. 81, 1887

Flavor of hadrons

For systems of quarks (e.g. *mesons*, $q\bar{q}$, or *baryons*, qqq):

- **Strangeness** $S = n(\bar{s}) n(s)$
- **Bottomness** (or beauty) $B = n(\overline{b}) n(b)$
- **Charm** $C = n(c) n(\bar{c})$
- **Topness** (or truth): $T = n(t) n(\bar{t})$
- For *u* and *d* quarks we use the **Isospin**
 - Each *u* quark contributes with $I_3 = \frac{1}{2}$
 - Each *d* quark contributes with $I_3 = -\frac{1}{2}$

Hadrons are particles made up of quarks. In particular:

- Mesons: $q\bar{q}$ bound states, e.g. B^0 meson = $d\bar{b}$
- **Baryons:** made up of three quarks, e.g. proton = *uud*

Neutrino Oscillations

- Neutrinos are hard to detect, since they do not interact much
 - 100 billion neutrinos pass through your thumbnail every second
 - And yet, you can expect one/two neutrino interactions in your body during your entire lifetime
- Atmospheric neutrinos problem:
 - From cosmic rays: $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ and $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_{\mu}$
 - But, early experiments measured a reduced rate of v_{μ} wrt the prediction
 - Solution \rightarrow muon neutrinos can convert to neutrinos of different flavor, e.g. $\nu_{\mu} \rightarrow \nu_{\tau}$

TABLE 1. Comparison of the number of observed events in Kamiokande with the expectation from simulations. The detector exposure was 2.87 kiloton years.

	Data	Prediction
e -like (mostly CC v_e interactions)	93	88.5
μ -like (mostly CC $ u_{\mu}$ interactions)	85	144.0

$$P_{\nu_e \to \nu_{\mu}} = \left(\sin(2\theta) \sin \frac{(m_1^2 - m_2^2)c^3}{4\hbar E} z \right)^2$$

non-zero mixing
between the flavors non-zero mass
difference

Flavor Changing Interactions

- Quark vertices
 - Flavor changing processes **across generations**

CKM Matrix

• The origin of the CKM matrix *V* is the **difference between mass eigenstates and weak interaction eigenstates**, i.e. flavor eigenstates

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

Flavor eigenstates Mass eigenstates

• W^{\pm} interacts with $\binom{u}{d'}, \binom{c}{s'}, \binom{t}{b'}$ with universal strength g, but universality is broken when we move to mass eigenbasis

CP violation in loop processes

 Comparing CP violation in these transitions to the one in transitions with no loops we are potentially sensitive to new physics occurring in the loop

Types of CP Violation

- In the Standard Model there are **three types** of CP violation:
 - 1. CP violation in the wave function, also called violation in mixing
 - It happens when the wave functions of the free Hamiltonian are not CP eigenstates. It is a small effect that has been observed in the neutral kaon system.
 - 2. CP violation in decays, also called <u>direct</u> CP violation
 - Let M be a meson decaying into the final state f. If CP is conserved the amplitude $M \rightarrow f$ should be equal to $\overline{M} \rightarrow \overline{f}$. This type of CP violation can be observed in both neutral and charged mesons, e.g. $B^0 \rightarrow K^+\pi^-$

Types of CP Violation

- In the Standard Model there are **three types** of CP violation:
 - 3. Violation in the interference between decays with and without oscillation
 - This type of CP violation is due to the interference of the decay without mixing M → f and the decay with mixing M → M → f. This effect can be observed in the decay to final states common to both M and M. It was observed for the first time in 2001 by Belle and BaBar experiments (result of slide 15)

 $B^0 \rightarrow J/\psi K_{\rm S}^0$

Decay without oscillation

 $B^0 \to \overline{B}{}^0 \to I/\psi K_{\rm S}^0$

Decay with oscillation