MEASUREMENT OF CP ASYMMETRIES IN $B^0 \rightarrow \eta' K^0$ DECAYS

Noah Brenny

IOWA STATE UNIVERSITY Belle II Explorer

2025 Belle II Summer Workshop

June 23rd, 2025

Review of CP violation in the Standard Model

See <u>Valeria's talk</u>

- There is more matter than anti-matter in the universe
- Sakharov 1967: generation of matter/anti-matter asymmetry requires C and CP violation (and 2 other conditions)
 - *CP* violation from New Physics may have played a role in the early universe, producing the matter/anti-matter asymmetry!
- A single parameter generates all *CP* violation in the Standard Model

C: charge conjugation *CP:* charge-parity (particle -> anti-particle)

Measuring CP violation

CP violation can be generated in decay: C_f

Time-dependent —

—

Measuring CP violation

- *CP* violation golden mode: $B^0 \rightarrow J/\psi K^0$ ($b \rightarrow c \bar{c} s$)
 - Large branching fraction, low background, small theoretical uncertainties
 - Tree level; clean measurement of S_f

Left: *CP*-odd modes, Right: *CP*-even mode

Measuring CP violation

- Adjacent mode: $B^0 \to \eta' K^0 \ (b \to q \overline{q} s)$
 - Same weak phase as $B^0 \rightarrow J/\psi K^0$ in SM
 - Can compare CP asymmetries in the modes
 - CKM suppression → penguindominated amplitude → sensitive to New Physics in loop
 - Reasonable branching fraction, clean final state

Extracting sin $2\beta^{(eff)}$ from $B^0 \rightarrow \eta' K_S^0$

- Reconstruct signal decay: $B^0 \rightarrow \eta' K_S^0$
- Then from remaining tracks, reconstruct decay vertex of flavor-specific final state
- Decay time difference Δt between B_{CP} and B_{tag} distributed as $\frac{e^{\frac{|\Delta t|}{\tau}}}{4\tau} \{1 \pm [S_f \sin(\Delta m_d \Delta t) - C_f \cos(\Delta m_d \Delta t)]\}$
 - τ : mean B^0 lifetime
 - +: B^0 tag, -: $\overline{B^0}$ tag
 - Asymmetry ~ $S_f \sin(\Delta m_d \Delta t)$

 $\begin{array}{c} "B_{CP}" \\ \eta' K_{S}^{0} \\ \uparrow \\ \Upsilon(4S) \rightarrow B^{0} \overline{B^{0}} \\ \downarrow \\ Flavor-specific final state \\ "B_{tag}" \end{array}$

Flavor specific example: $\frac{B^0 \rightarrow D^{(*)-}\pi^+}{\overline{B^0} \rightarrow D^{(*)+}\pi^-}$

Flavor determined from charge of pion

Current status

- 8 modes studied
 - Will measure $B^0 \rightarrow \eta'_{\rho\gamma} K^0_L$ mode for the first time
 - Will include $K_S^0 \rightarrow \pi^0 \pi^0$ for the first time at Belle II
- Selection finalized
 - BDT to select true $K_S^0 \rightarrow \pi^0 \pi^0$ based on K_S^0 and π^0 kinematics
 - Bayesian optimization on mass windows, photon energy, etc.
 - Continuum suppression BDT
 - Improved yields and signal purity compared to current measurements

$$\begin{split} B^{0} &\to \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{\pi^{+}\pi^{-}} \\ B^{0} &\to \eta'_{\rho\gamma}K^{0}_{\pi^{+}\pi^{-}} \\ B^{0} &\to \eta'_{\eta(3\pi)\pi^{+}\pi^{-}}K^{0}_{\pi^{+}\pi^{-}} \\ B^{0} &\to \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{\pi^{0}\pi^{0}} \\ B^{0} &\to \eta'_{\rho\gamma}K^{0}_{\pi^{0}\pi^{0}} \\ B^{0} &\to \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{L} \\ B^{0} &\to \eta'_{\eta(3\pi)\pi^{+}\pi^{-}}K^{0}_{L} \\ B^{0} &\to \eta'_{\rho\gamma}K^{0}_{L} \end{split}$$

Backup

 $B^0 \rightarrow D^{*-}\pi^+$ flavorspecific decay

 $\overline{B^0} \rightarrow D^{*-}\pi^+$ doubly CKM suppressed decay

KS00 BDT

11