
Belle II Software Roadmap

Frank Meier

2025 Belle II Summer Workshop

23 June 2025

Belle

Research supported by



Introduction

I Belle II Analysis Software Framework (basf2) divided into 35 packages

I One for each subdetector: arich, cdc, ecl klm, pxd, svd, top, vxd
I Core packages: framework, reconstruction, tracking
I Data taking: daq, hlt, rawdata, trg
I Data quality: alignment, calibration, dqm, validation
I Data storage tables: mdst, skim
I MC: decfiles, generators, geometry, simulation, structure
I Background: background, beast, ir
I Offline analysis: analysis, b2bii, mva
I Documentation / outreach: display, masterclass, online_book

I Each package has one or two librarians (total number of librarians: 40)

I Code written in C++

I One shared library created per package and installed in top-level lib

directory

I Build system based on SCons

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 2 / 18



Modular structure

I Linear arrangement of C++ modules in a path

I Core functions of modules

I initialize
I beginRun
I event
I endRun
I terminate

I Python steering script to set up path

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 3 / 18



Conditions Database

I Storage place of additional data needed to interpret and analyze the data that can change over time, e.g.,

detector configuration or calibration constants

I Payloads: binary objects (usually ROOT files) identified by name and revision number

I Each payload has defined intervals of validity (iov), i.e., experiment and run range

I Globaltag: collection of payloads and iovs for a certain dataset, identified by unique name

I Once prepared globaltag is immutable and cannot be modified any further to ensure reproducibility of

analyses

I Different processing iterations use different globaltags

I Globaltag of reconstruction stored in metadata and automatically applied

I Chain of globaltags possible

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 4 / 18



Data-taking

I basf2 runs on 12 high-level trigger nodes (14 from fall 2025)

I ZeroMQ

I Acts like concurrency framework while looking like an embeddable networking library
I Sockets that carry atomic messages across various transports like in-process, inter-process, TCP, and

multicast
I Fast
I Asynchronous I/O model → scalable to multi-core operation

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 5 / 18



Reconstruction chain

I RootInputModule

I Geometry

I Clustering of calorimeter

I Clustering of pixel and silicon vertex detectors

I Track finding

I Track fitting

I Track extrapolation

I Track-cluster matching

I Software trigger

I Post-filter tracking

I PID

I RootOutputModule

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 6 / 18



Tracking

I Pattern recognition / track finding

I Finding hits belonging to the same charged particle
I SectorMaps

↓
Segment Network

↓
Cellular Automaton to find longest paths

I SVD-only pattern recognition and CDC-only pattern recognition
I Inter-detector track finding via Combinatorial Kalman Filter

I Track fit

I Extracting track parameters from fit to collection of hits
I Deterministic Annealing Filter (DAF)
I Currently use GenFit package (DOI:10.5281/zenodo.10301439)

I Track refining

I Flip and Refit

I More details in sphinx documentation

I End-to-End Multi-Track Reconstruction using Graph Neural Networks at Belle II Comput. Softw. Big Sci. 9, 6 (2025)

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 7 / 18

https://zenodo.org/doi/10.5281/zenodo.10301439
https://software.belle2.org/development/sphinx/tracking/doc/index.html
https://link.springer.com/article/10.1007/s41781-025-00135-6


Tracking

I Pattern recognition / track finding

I Finding hits belonging to the same charged particle
I SectorMaps

↓
Segment Network

↓
Cellular Automaton to find longest paths

I SVD-only pattern recognition and CDC-only pattern recognition
I Inter-detector track finding via Combinatorial Kalman Filter

I Track fit

I Extracting track parameters from fit to collection of hits
I Deterministic Annealing Filter (DAF)
I Currently use GenFit package (DOI:10.5281/zenodo.10301439)

I Track refining

I Flip and Refit

I More details in sphinx documentation

I End-to-End Multi-Track Reconstruction using Graph Neural Networks at Belle II Comput. Softw. Big Sci. 9, 6 (2025)

100 50 0 50 100
x (cm)

100

50

0

50

100

y 
(c

m
)

Belle II Simulation

background
signal
GNN prediction

CAT Finder

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 7 / 18

https://zenodo.org/doi/10.5281/zenodo.10301439
https://software.belle2.org/development/sphinx/tracking/doc/index.html
https://link.springer.com/article/10.1007/s41781-025-00135-6


Unit-tests

I First layer of software validation

I Run full test suite for each commit of open merge requests and each merge into main or release branch

I Unit-tests intended to catch non-trivial dependencies and implications of code changes

I Currently about 1000 unit-tests of C++ code using GoogleTest

I Check basic functionality of modules, return values of functions and variables

I About 350 additional python tests

I Make sure that standard scripts do not crash
I Compare output of certain scripts with reference expectation, e.g., for mdst backward compatibility

I Running all tests (in 16 parallel processes) takes 15 - 20min

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 8 / 18



Nightly validation

I Run once per day (night)

I Workflow of nightly validation

1. Generate smallish samples

2. Run validation scripts

3. Create output histograms

4. Comparison with reference

I Calculate p value of histogram compatibility
I Calculate performance numbers, e.g., width of distribution

I Plots of various software releases uploaded to web server

I Email notifications sent out to assigned contacts

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 9 / 18



Nightly validation

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 10 / 18



Monitoring

I Nightly build run with different configurations (debug, intel, clang)

I Many resource checks (memory consumption, execution time, output file size)

I Summarize build warnings, cppcheck, doxygen check, dependency check, geometry overlap check

I History plots of warning and error counters as well as resource usage

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 11 / 18



Monitoring

I Nightly build run with different configurations (debug, intel, clang)

I Many resource checks (memory consumption, execution time, output file size)

I Summarize build warnings, cppcheck, doxygen check, dependency check, geometry overlap check

I History plots of warning and error counters as well as resource usage

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 11 / 18



Monitoring

I Nightly build run with different configurations (debug, intel, clang)

I Many resource checks (memory consumption, execution time, output file size)

I Summarize build warnings, cppcheck, doxygen check, dependency check, geometry overlap check

I History plots of warning and error counters as well as resource usage

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 11 / 18



Documentation

I Good documentation crucial to (recruiting) process of

software development and maintenance

I Documentation publicly available at

https://software.belle2.org/

I Sphinx

I Use reStructuredText
I Use sphinx’s autodoc feature to conveniently create

documentation based on python’s docstrings

I Doxygen for C++ documentation

I Tests for (almost) all packages to ensure that everything is

documented

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 12 / 18

https://software.belle2.org/


Release policy

I Major releases

I Once a year (feature freeze for release-10 in one week)
I Very thorough validation
I Contains all software changes that are merged to the main branch

I Minor releases

I Frequency: one to two per major release
I Limited amount of new features, usually for specific purpose

I Patch releases

I Mostly for bug fixes, especially for data-taking and calibration
I During data-taking synchronized with maintenance days

I Light releases

I Every two months
I For introduction of new offline data analysis features
I Contain only framework, mdst, mva, analysis, skim, geometry, online_book, and b2bii packages
I No unpacking or digitization ⇒ only mdst and udst can be processed
I Currently named after celestial objects: aldebaran, betelgeuse, ceres, deimos

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 13 / 18



Supported environments

I basf2 meant to work on any recent 64bit Linux system but only tested and binaries provided for

I Enterprise Linux 8 or CentOS 8
I Enterprise Linux 9 or AlmaLinux 9
I Ubuntu 22.04
I Ubuntu 24.04

I basf2 distributed via cvmfs

I ARM version under development

I Central Buildbot instance connected via GitLab webhooks to code changes

⇒ triggers builds on various workers

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 14 / 18



Externals

I Versioned set of external software packages used and linked against the Belle II software

I Dependency between packages considered and compatibility guaranteed

I C++ packages like

I ROOT, XRootD
I gcc, clang, gdb, cmake, Python
I boost, Eigen, gsl
I EvtGen, Geant4, clhep, PYTHIA
I git, cppcheck, doxygen

I Includes patches

I Python packages like pandas, matplotlib, torch, tensorflow, jupyter, …

I Source files uploaded to web server to never lose availability

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 15 / 18



Tools

I Collection of scripts to prepare environment for execution of Belle II software

I b2setup
I Setting environment variables

I b2code-create, b2code-style-check, b2code-style-fix, b2code-clean
I Creating local directory for core software development and fixing style issues

I b2install-prepare, b2install-release, b2install-externals, b2install-data
I Installing pre-compiled software versions or example data on local machine

I b2analysis-create, b2analysis-get, b2analysis-update
I Creating local directory for development of analysis code including preparation of build system and

addition of repository to git

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 16 / 18



Links & License

I basf2 source code

I Internal GitLab repository at https://gitlab.desy.de/belle2/software/basf2
I basf2 links against defined set of third-party libraries called externals

I Internal GitLab repository at https://gitlab.desy.de/belle2/software/externals
I Repository with scripts to install and set up basf2 called tools

I Internal GitLab repository at https://gitlab.desy.de/belle2/software/tools
I Repository with script for version managing (recommended releases and global tags)

I Internal GitLab repository at https://gitlab.desy.de/belle2/software/versioning
I LGPL (GNU Lesser General Public License) version 3 or later

I Header in each file:

basf2 (Belle II Analysis Software Framework)

Author: The Belle II Collaboration

See git log for contributors and copyright holders.

This file is licensed under LGPL-3.0, see LICENSE.md.

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 17 / 18

https://gitlab.desy.de/belle2/software/basf2
https://gitlab.desy.de/belle2/software/externals
https://gitlab.desy.de/belle2/software/tools
https://gitlab.desy.de/belle2/software/versioning


Links & License

I basf2 source code

I Publicly available at https://github.com/belle2/basf2
I basf2 links against defined set of third-party libraries called externals

I Publicly available at https://github.com/belle2/externals
I Repository with scripts to install and set up basf2 called tools

I Publicly available at https://github.com/belle2/tools
I Repository with script for version managing (recommended releases and global tags)

I Publicly available at https://github.com/belle2/versioning
I LGPL (GNU Lesser General Public License) version 3 or later

I Header in each file:

basf2 (Belle II Analysis Software Framework)

Author: The Belle II Collaboration

See git log for contributors and copyright holders.

This file is licensed under LGPL-3.0, see LICENSE.md.

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 17 / 18

https://github.com/belle2/basf2
https://github.com/belle2/externals
https://github.com/belle2/tools
https://github.com/belle2/versioning


Conclusion

I Belle II software = C++ code with python interface

I Serial execution of dynamically loaded modules to process collection of events

I Conditions Database stores settings and calibration constants

I Unit-test ensure stability of software

I Nightly validation

I Documentation via sphinx and doxygen

I Please cite Comput. Softw. Big Sci. 3, 1 (2019) and DOI:10.5281/zenodo.5574115 in Belle II papers

Thanks for your attention!

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 18 / 18

https://doi.org/10.1007/s41781-018-0017-9
https://doi.org/10.5281/zenodo.5574115


Conclusion

I Belle II software = C++ code with python interface

I Serial execution of dynamically loaded modules to process collection of events

I Conditions Database stores settings and calibration constants

I Unit-test ensure stability of software

I Nightly validation

I Documentation via sphinx and doxygen

I Please cite Comput. Softw. Big Sci. 3, 1 (2019) and DOI:10.5281/zenodo.5574115 in Belle II papers

Thanks for your attention!

Frank Meier (Duke University) Belle II Software Roadmap 23.06.2025 18 / 18

https://doi.org/10.1007/s41781-018-0017-9
https://doi.org/10.5281/zenodo.5574115

