
Intro to basf2
Logan Benninghoff (UMiss)

Alex Gale (UC)

Belle II Summer Workshop 2025

at Virginia Tech

1

Benninghoff 23/06/2025

Overview
- Intro to basf2

- Physics Analysis (Broadly)

- Converting this to code

- Specific code we use

- Wrap up

2

Benninghoff 23/06/2025

Introduction to basf2
basf2 ~ “Belle II Analysis Software Framework”

basf2 is the software that handles most data
processing tasks at Belle II. Most notably used for,

-Generating simulated data

-Processing raw data from detectors

-Reconstructing events

(Final analysis of data after these steps is often
handled outside of basf2.)

3

Benninghoff 23/06/2025

What is basf2?
basf2 is a collection of C++ modules that we can call
using a python interface (steering scripts).

It is also a set of command line tools that we can use
to handle data files.

The basf2 documentation is an excellent resource,

https://software.belle2.org/

Reference the sphinx documentation for the release
you are using (often the latest light release).

4

https://software.belle2.org/

Benninghoff 23/06/2025

basf2 versions
“release-08-01-07” ~ Format for basf2 releases

major release ~ New version once a year, contains all
new software changes.

minor release ~ Adds limited set of new features.

patch ~ Primarily bug fixes.

In addition to the full releases, there are light releases
of the software, that incorporate data analysis
changes.

5

Benninghoff 23/06/2025

basf2 versions
For the hands on activity we can work with a light
release. The format for a light release is,

“light-2505-deimos”

25 ~ Release year

05 ~ Release month

deimos ~ “codename” for this light release

Light releases contain a focused subset of basf2
packages, suitable for physics analysis tasks.

6

Benninghoff 23/06/2025

basf2 Key Terminology
basf2 Module ~ A collection of code (usually C++
code) that performs a specific data processing task.

Path ~ Modules are added to a sequence that we call
a path, then are run in order.

7

Image courtesy of basf2 sphinx documentation.

Benninghoff 23/06/2025

basf2 Key Terminology
Steering file/script ~ A python script used to create a
path, add the desired modules to it, then run the
sequence.

Packages ~ Collections of related modules and
python scripts.

Package examples: analysis, tracking, reconstruction,
ecl, klm…

You can see the list on gitlab, each directory on the
page is a package ~ https://gitlab.desy.de/belle2/
software/basf2

8

https://gitlab.desy.de/belle2/software/basf2
https://gitlab.desy.de/belle2/software/basf2

Benninghoff 23/06/2025

The Data Store
[Note ~ As a beginner you will not need to use this
subject directly. Just good to know the terminology.]

How do modules save/load information as the path is
running?

Modules retrieve and save data objects to the
globally accessible data store.

Data objects ~ These are C++ objects that contain
collections of variables relevant to that data object.

9

Benninghoff 23/06/2025

The Data Store
[Note ~ As a beginner you will not need to use this
subject directly. Just good to know the terminology.]

Ex. ~ The KLMMuidHits data object contains the
position of a hit in KLM layer 5 (and all other hit info).

We connect data objects with relations, so we build
more complex objects out of lower level objects.

Ex. ~ Cluster objects constructed with info from Hits.

For efficiency/storage reasons, low-level objects are
deleted after reconstruction-level objects are formed.

10

Benninghoff 23/06/2025

mDST
This will be discussed more in data production talks
later this week, so just a brief intro,

mDST (mini Data Summary Table) ~ These are .root
files containing only data objects necessary for a
physics analysis. (~Tracks, PID Likelihoods, Clusters)

For the hands-on session we will work with a
prepared and provided mDST file.

(Note ~ ROOT is a software framework started at
CERN, we use .root files to store data.)

11

Benninghoff 23/06/2025

Physics Analysis (Broadly)
Load a subset of events from an mdst, that contains
the necessary data objects (tracks, clusters, PID
likelihoods, etc.)

We reconstruct final state particles from data objects.

Note ~ The construction of object -> particle is not
one-to-one.

Ex. ~ One track object can have equal likelihoods of
being a muon or pion hypothesis, and we may
construct both a muon and a pion out of this track.

12

Benninghoff 23/06/2025

Physics Analysis (Broadly)
Final state particles and some of their object sources
(in conjunction with PID objects),

13

data object particle

Track

neutral ECL Cluster

Neutral KLM Cluster

V0

e, μ, π, K, p, d
γ, K0

L, n
K0

L, n
γ, K0

S , Λ, Λ̄

From final state -> reconstruct more energetic
particles that decayed in the event.

For all particle reconstructions, we include cuts
(some are more standard, some analysis specific).

Benninghoff 23/06/2025

Physics Analysis (Broadly)
Note ~ Our physics analyses are run on simulated
data while being developed. Gives insight into the
process studied, and means we add a step here,

We need to match the event reconstructed with the
known parameters of the simulated event.

Ex. ~ Check how many pions we mistakenly
reconstructed as muons.

Built in tools exist, but there will also be a hands-on
MC truth matching session with better methods.

14

Benninghoff 23/06/2025

Physics Analysis (Broadly)
Finally, we need to write out our variables of interest
from the event into an Ntuple (.root file).

Now we convert this abstract plan into basf2 code.

15

Benninghoff 23/06/2025

Physics Analysis (Broadly)
Finally, we need to write out our variables of interest
from the event into an Ntuple (.root file).

Now we convert this abstract plan into basf2 code.

What basf2 code do I need to write? (Show of
fingers, 1-4. Pick the best option, they’re not all
strictly “wrong”.)

16

1) A module

2) A package

3) A steering file

4) A data object

Benninghoff 23/06/2025

Physics Analysis (Broadly)
Finally, we need to write out our variables of interest
from the event into an Ntuple (.root file).

Now we convert this abstract plan into basf2 code.

What basf2 code do I need to write? (Show of
fingers, 1-4. Pick the best option, they’re not all
strictly “wrong”.)

17

1) A module

2) A package

3) A steering file

4) A data object

Benninghoff 23/06/2025

Steering File Anatomy (Incomplete)
import basf2 python module (different usage of
“module” terminology)

Create the path

Read in data file(s)

Make final state particle list

Form composite particles, truth match

Save variables to an output file

Process the path

18

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
import basf2 python module (different usage of
“module” terminology) + other python modules

Create the path (and set other initial condition info)

Read in data file(s)

Make final state particle list (with cuts)

Form composite particles, truth match (with cuts)

Save variables to an output file (with alias names)

Process the path (print statistics)

19

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
import basf2 python module + others

Create the path (and set initial condition info)

Read in data files

Make final state particle list, with cuts

Form composite particles, with cuts

Truth match

Save variables to an output file (with alias names)

Process the path, print statistics
20

Benninghoff 23/06/2025

Imports
Need to import any python modules that we need.
Starting out we want,

21

modularAnalysis ~ Python module containing wrapper
functions for C++ modules. We can call most of the
modules we need for physics analyses with this.

Remember to add the import for python modules you
add later on.

‣ import basf2 as b2
‣ import modularAnalysis as ma

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
✓ import basf2 python module + others

Create the path (and set initial condition info)

Read in data files

Make final state particle list, with cuts

Form composite particles, with cuts

Truth match

Save variables to an output file (with alias names)

Process the path, print statistics
22

Benninghoff 23/06/2025

Creating Path

23

We then want to setup our path and give it a name ~
main_path here,

‣ main_path = b2.Path()

Note ~ The Belle II detector calibration values and
configuration of components change over time.

Some modules need this information, so it is stored
as payloads in the conditions database.

If we need this information, we insert an additional
line of code before creating our path.

Benninghoff 23/06/2025

Globaltag

24

Payloads have an interval of validity (iov), which is the
range of runs they are valid for.

A globaltag collects the payloads and iov’s for a
dataset, and we add it in our steering file with,

‣ b2.conditions.append_globaltag(
‣ ma.getAnalysisGlobaltag()
‣)

This line would precede creating our path.

For the hands-on activity we won’t need to make use
of the globaltag, but it is important to discuss.

Benninghoff 23/06/2025

Globaltag

25

Bonus note,

At the moment (June 2025), in order to make use of
Neural Network variables (Ex. ~ PionIDNN), we need,

‣ b2.conditions.append_globaltag(
‣ ‘pid_nn_release08_v1’
‣)

The ordering of globaltags matters for some
applications ~ This is why we have both “append”
and “prepend” globaltag options.

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
✓ import basf2 python module + others

✓ Create the path (and set initial condition info)

Read in data files

Make final state particle list, with cuts

Form composite particles, with cuts

Truth match

Save variables to an output file (with alias names)

Process the path, print statistics
26

Benninghoff 23/06/2025

Input files
To read in a data file, we use inputMdst(), or
inputMdstList() for multiple files,

27

Note ~ For most modules, you will need to fill in your
path name.

For the hands-on session we’ll replace the file name
string.

‣ ma.inputMdst(“~/fakename.root", path=main_path)

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
✓ import basf2 python module + others

✓ Create the path (and set initial condition info)

✓ Read in data files

Make final state particle list, with cuts

Form composite particles, with cuts

Truth match

Save variables to an output file (with alias names)

Process the path, print statistics
28

Benninghoff 23/06/2025

Forming Particles
To build final state particles we call the fillParticleList()
module, and provide a string for the particle type,

29

Note ~ For charged particles, fillParticleList by default
will create a list for both the given particle, and it’s
charge conjugate.

Creates two lists, one for e-, one for e+.

‣ ma.fillParticleList(‘e-:all’,‘’, path=main_path)

Benninghoff 23/06/2025

Particle Grammar I

30

We provided fillParticleList with a decayString that
gives the final state particle, with a label after a colon.

There are two reserved labels,

“e-:all” ~ Label for no cuts

“e-:MC” ~ Label for generated particles (MCparticle)

The particle name before the colon is converted to
the PDG code for that particle when the module runs.

Benninghoff 23/06/2025

Adding cuts

31

We use the decayString labels to indicate what cuts
we’ve applied to a list of particles.

The cuts chosen depend on your analysis and the
particle type, but there are some common cuts.

Convenient way to do this, define a string,

‣ goodTrack = 'thetaInCDCAcceptance and
‣ dr < 0.5 and abs(dz) < 2’

‣ ma.fillParticleList(‘e-:all’,
‣ goodTrack, path=main_path)

Benninghoff 23/06/2025

What cuts to use?

32

The cuts I’ve chosen here are,

~ The track must be within the polar angle
 (within the range of the CDC).

~ The track originates at a position within a radial
distance 0.5 cm and z-component distance of 2 cm
from the interaction point.

(These are relatively common.)

17∘ < θ < 150∘

‣ goodTrack = 'thetaInCDCAcceptance and
‣ dr < 0.5 and abs(dz) < 2’

Benninghoff 23/06/2025

Adding cuts

33

We can also apply cuts after creating the particle list,

‣ goodTrack = 'thetaInCDCAcceptance and
‣ dr < 0.5 and abs(dz) < 2’

‣ ma.fillParticleList(‘mu-:select’,
‣ goodTrack, path=main_path)

‣ ma.applyCuts(“mu-:select",
‣ cut=‘p > 2.0’, path=main_path)

(ma.applyCuts will be useful later.)

Benninghoff 23/06/2025

What cuts to use?

34

There are standard particle lists for charged particles,
but we generally do not use them past early stages.

It is recommended that you use the standard
selections for V0 decays (neutral decays to two
charged particles) and other neutral decays.

Usage for example, creates “K_S0:merged” list,K0
S

‣ import stdV0s as s0

‣ s0.stdKshorts(path=main_path)

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
✓ import basf2 python module + others

✓ Create the path (and set initial condition info)

✓ Read in data files

✓Make final state particle list, with cuts

Form composite particles, with cuts

Truth match

Save variables to an output file (with alias names)

Process the path, print statistics
35

Benninghoff 23/06/2025

“Combining” final state particles

36

From the final state particles, we reconstruct the
particle they decayed from. We use reconstructDecay
for this,

‣ ma.reconstructDecay(decayString,
‣ cut=‘X.XX < M < Y.YY’, path=main_path)

reconstructDecay calls the particleCombiner module.

By default, particleCombiner creates the charge
conjugated list along with described decay. It also
ensures no particles are reused in a decay.

What do we put for decayString?

Benninghoff 23/06/2025

Particle Grammar II

37

We write our decay string with the following structure,

General: “Mother” arrow “Daughter 0” “Daughter 1”…

For multiple decays we use brackets,

Ex. ~ Lambda_c+ -> Sigma+ [K_S -> pi+ pi-]

For reconstructDecay, we include associated labels,
Lambda_c+:select -> Sigma+:loose [K_S:loose ->
pi+:loose pi-:loose]
‣ ma.reconstructDecay('Xi_c+:sig ->
‣ Lambda_c+:pkpi pi0:eff40_May2020',
‣ cut=‘X < M < Y’, path=main_path)

Benninghoff 23/06/2025

Vertex Fitting

38

After we’ve reconstructed the mother particle, we
may want to re-fit the decay vertex. - Gives new
vertex position and 4-momenta

The vertex python module contains fitting algorithms,

~ TreeFit: Global fitting algorithm, good for long
decay chains

~ kFit: Fast, kinematics based fitter

~ More options available, not covered here (hands-on
will use TreeFit)

Benninghoff 23/06/2025

Vertex Fitting

39

Using TreeFit,

‣ import vertex as vx

‣ vx.treeFit('Xi_c+:sig', conf_level=0,
‣ updateAllDaughters=True,
‣ massConstraint=['pi0'], path=main)

~ particleList: We give the mother particle in the
decay chain that we’re fitting.

~ conf_level: Minimum accepted confidence level.
The value 0 here means we accept any successful
fits. A value of -1 accepts all candidates.

Benninghoff 23/06/2025

Vertex Fitting

40

Using TreeFit,

‣ import vertex as vx

‣ vx.treeFit('Xi_c+:sig', conf_level=0,
‣ updateAllDaughters=True,
‣ massConstraint=['pi0'], path=main)

~ updateAllDaughters: Rewrites momenta/position of
daughters after the fit.

~ massConstraint: We tell the fitting algorithm to use
the known PDG mass of the particle given to
constrain the fit.

Benninghoff 23/06/2025

Vertex Fitting

41

If we use updateAllDaughters=True, we may want to
save the 4-momenta or vertex position before the fit,

‣ ma.variablesToExtraInfo(‘pi0:eff40_May
2020’,

‣ variables={‘M':'Mpi0_before_fit'},
‣ path=main)
‣ va.addAlias(‘pi0_MBeforeFit',
‣ 'extraInfo(Mpi0_before_fit)')

We’ll see some of these commands farther in.

Benninghoff 23/06/2025

Best Candidate Selection

42

There may be multiple sets of fit parameters that
satisfy our decay reconstruction, or vertex fit, how do
we pick one to use?

We chose a variable to rank by (chiProb here),
‣ ma.rankByHighest(‘Xi_c+:sig',
‣ variable=‘chiProb', allowMultiRank=True,
‣ outputVariable=‘Xi_c+_rank’, path=main)

‣ va.addAlias(‘Xi_c+_rank’,
‣ ‘extraInfo(Xi_c+_rank)’)

‣ ma.applyCuts(‘Xi_c+:sig’,
‣ ‘Xi_c+_rank == 1’, path=main)

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
✓ import basf2 python module + others

✓ Create the path (and set initial condition info)

✓ Read in data files

✓Make final state particle list, with cuts

✓Form composite particles, with cuts

Truth match

Save variables to an output file (with alias names)

Process the path, print statistics
43

Benninghoff 23/06/2025

Truth Matching

44

We’ll have a hands-on discussion for this later in the
week.

For now, just use matchMCTruth, which will relate
Particles and MCParticles,

‣ ma.matchMCTruth(list_name=‘Xi_c+:sig',
‣ path=main)

Notably, produces a binary isSignal variable, which is
1 for correctly reconstructed, 0 for incorrectly, and
NaN for no related particle found.

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
✓ import basf2 python module + others

✓ Create the path (and set initial condition info)

✓ Read in data files

✓Make final state particle list, with cuts

✓Form composite particles, with cuts

✓Truth match

Save variables to an output file (with alias names)

Process the path, print statistics
45

Benninghoff 23/06/2025

Variables

46

basf2 has pre-defined sets of variables called variable
collections.

Some examples so far have included variables from
kinematics (InvM, M, p, …) and mc_truth (isSignal…)

The basf2 documentation is your best friend when it
comes to finding useful variables.

https://software.belle2.org/development/sphinx/
analysis/doc/Variables.html#variable-InvM

https://software.belle2.org/development/sphinx/analysis/doc/Variables.html#variable-InvM
https://software.belle2.org/development/sphinx/analysis/doc/Variables.html#variable-InvM

Benninghoff 23/06/2025

Aliases

47

addAlias should be used to simplify names of some
information saved.

Ex. ~ Variables with arguments in parentheses.

‣ va.addAlias(‘gamma0_e9e21',
‣ 'daughter(0,clusterE9E21)')

We can use create_aliases_for_selected from the
variables.utils python module to make variables for
multiple particles in a decay string.

Benninghoff 23/06/2025

Particle Grammar III

48

We use indicators in the decay string to pull variables
for specific particles,

‣ vu.create_aliases_for_selected(
‣ list_of_variables=['M'],
‣ decay_string=‘B0 -> ˆJ/psi ˆK_S0’,
‣ prefix=[‘daughters'])

The marker chosen, “^” here, indicates which
particles to create the listed aliased variables for.

There are other marker options that you could look up
in the documentation.

Benninghoff 23/06/2025

Saving Variables

49

We need to write out the variables we are interested
in to an output file.

Generally we create a list of our variables, optionally
using our aliases.

We run variablesToNtuple to output a .root file with a
tree name given,

‣ ma.variablesToNtuple(‘Xi_c+:sig’,
‣ variables=list_of_vars,
‣ filename=‘my_ntuple.root’,
‣ treename='particle', path=main)

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
✓ import basf2 python module + others

✓ Create the path (and set initial condition info)

✓ Read in data files

✓Make final state particle list, with cuts

✓Form composite particles, with cuts

✓Truth match

✓Save variables to an output file (with alias names)

Process the path, print statistics
50

Benninghoff 23/06/2025

Executing the path

51

Add processing the path,

‣ b2.process(main_path)

Print statistics line,

‣ print(b2.statistics)

Benninghoff 23/06/2025

Steering File Anatomy (Analysis)
✓ import basf2 python module + others

✓ Create the path (and set initial condition info)

✓ Read in data files

✓Make final state particle list, with cuts

✓Form composite particles, with cuts

✓Truth match

✓Save variables to an output file (with alias names)

✓Process the path, print statistics
52

Benninghoff 23/06/2025

Wrapping up

53

This is the extent of this overview, but only the
beginning of the features available.

~ Continuum Suppression

~ Event level cuts

~ Full Event Interpretation (FEI)

~ Rest of Event (ROE), and ROE masking

~ Flavor Tagging

~ MVA package

~ And more…

End

54

