Tau physics

Swagato Banerjee UNIVERSITY OF LOUISVILLE.

2025 Belle II Summer Workshop

B factories are also τ factories

Tau physics

Projected luminosity at SuperKEKB/Belle II

Physics results from tau leptons

- **Cabibbo angle anomaly** $|V_{\mu s}|$ (**BaBar, Belle (II)**)
 - Precision improved by additional measurements of
 - m_{τ}, τ_{τ} (BaBar, Belle (II), STCF, FCC-ee)
 - $|g_{\mu}/g_{e}|, |g_{\tau}/g_{e}|, |g_{\tau}/g_{\mu}|$ (BaBar, Belle (II)) NEW

PRD 108 (2023) 3, 032006

JHEP 08 (2024) 205

- Lepton flavor violation (charge conjugate modes implied)
 - $\tau \rightarrow \ell \gamma$ (BaBar, Belle (II), STCF, FCC-ee)
 - $\tau \rightarrow \ell$ (scalar/pseudoscalar/vector mesons) (BaBar, Belle (II))
 - $\tau \rightarrow \ell \ell \ell \ell$ (BaBar, Belle II, ATLAS, CMS, LHCb, STCF, FCC-ee)
 - $\tau \rightarrow \ell'$ h h (non-resonant states with h= π/K) (BaBar, Belle (II), STCF)
 - $\tau \rightarrow \ell'$ invisible (α) (Belle (II)) New
 - $e \rightarrow \tau$ transitions (EIC)
- Lepton number violation
 - $\tau^- \rightarrow e^+ h^- h^-$ (non-resonant final states with $h=\pi/K$) (BaBar, Belle (II))
 - $\tau^- \rightarrow \mu^+ h^- h^-$ (non-resonant final states with h= π/K) (BaBar, Belle (II))
- **Baryon number violation**
 - $\tau^- \rightarrow \Lambda \pi^-, \overline{\Lambda} \pi^-$ (Belle II)
 - $\tau^- \rightarrow \overline{p} \mu^+ \mu^-$, p $\mu^- \mu^-$ (Belle)

PRD 110 (2024) 11, 112003

PRL 130 (2023) 18, 181803

 $\tau \to \ell K_{\varsigma}^0$

2504.15745 [hep-ex

2503.22195 [hep-ex]

 $\tau \rightarrow \mu \mu \mu$

JHEP 09 (2024) 062

τ decays

Swagato Banerjee UofL

Tau physics

- Most of the branching fractions are highly correlated.
- Sources of correlation between the same experiment:
 - $\hfill \label{eq:struction}$ Track reconstruction $\sim 1\%$ for 1-vs-1 topology
 - \bullet Secondary vertex reconstruction $\sim 1.5\%$ for K_S
 - Calorimeter bump reconstruction ~ 2-4% for π^0
 - Kaon/Pion identification ~ 2-4 %
 - ${\scriptstyle \bullet}$ Luminosity uncertainty ${\sim}~1\%$

Sources of correlation between different experiments:

- ${\scriptstyle \bullet}$ Tau-pair cross-section uncertainty $\sim 0.36\%$
- Uncertainty on Branching Fractions of backgrounds

Simultaneous averaging of all branching fractions

Heavy Flavor Averaging Group (HFLAV)

• Minimize total χ^2 of 172 measurements with uncertainties:

- •39 from ALEPH
- •35 from CLEO
- •24 from BaBar
- I9 from OPAL
- 15 from Belle
- I from Belle II
- 14 from DELPHI
- •11 from L3
- •6 from CLEO3
- •3 from TPC
- 2 from ARGUS
- 2 from HRS
- I from CELLO

- correlations between measurements
- common external parameters such as tau-pair cross-section and background normalization
- avoid inflating uncertainties using PDG-style scale factors
- instead, quote confidence level

HFLAV 2023 fit [e-Print: 2411.18639 [hep-ex]]

- 137 fit parameters (1 nuisance parameter)
- χ^2 /d.o.f. = 138/125, $P(\chi^2) = 20.2\%$
- Unitarity residual $1 \mathscr{B}_{all} = 0.0007 \pm 0.0011$

Tau physics

The route to |Vus| from inclusive strange τ decays

HFLAV 2023 fit [e-Print: 2411.18639 [hep-ex]]

Branching fraction	HFLAV 2023 fit (%)
$\mathcal{B}(\tau^- o K^- u_{ au})$	0.6959 ± 0.0096
$\mathcal{B}(au^- o K^- \pi^0 u_ au)$	0.4321 ± 0.0148
$\mathcal{B}(\tau^- \to K^- 2\pi^0 \nu_\tau \ (\text{ex.}K^0))$	0.0634 ± 0.0219
$\mathcal{B}(\tau^- \to K^- 3 \pi^0 \nu_\tau \ (\text{ex.} K^0, \eta))$	0.0465 ± 0.0213
${\cal B}(au^- o \pi^- \overline{K}^0 u_ au)$	0.8375 ± 0.0139
${\cal B}(au^- o \pi^- \overline{K}^0 \pi^0 u_ au)$	0.3810 ± 0.0129
$\mathcal{B}(\tau^- \to \pi^- \overline{K}^0 2 \pi^0 \nu_\tau \ (\text{ex.} K^0))$	0.0234 ± 0.0231
$\mathcal{B}(au^- ightarrow \overline{K}^0 h^- h^- h^+ u_ au)$	0.0222 ± 0.0202
$\mathcal{B}(\tau^- \to K^- \eta \nu_{\tau})$	0.0155 ± 0.0008
$\mathcal{B}(\tau^- \to K^- \pi^0 \eta \nu_{\tau})$	0.0048 ± 0.0012
$\mathcal{B}(\tau^- o \pi^- \overline{K}^0 \eta \nu_{\tau})$	0.0094 ± 0.0015
$\mathcal{B}(\tau^- o K^- \omega u_{ au})$	0.0410 ± 0.0092
$\mathcal{B}(\tau^- \to K^- \phi(K^+ K^-) \nu_{\tau})$	0.0022 ± 0.0008
$\mathcal{B}(\tau^- \to K^- \phi(K^0_S K^0_L) \nu_{\tau})$	0.0015 ± 0.0006
$\mathcal{B}(\tau^- \to K^- \pi^- \pi^+ \nu_\tau \ (\text{ex.} K^0, \omega))$	0.2924 ± 0.0068
$\mathcal{B}(\tau^- \to K^- \pi^- \pi^+ \pi^0 \nu_\tau \ (\text{ex.} K^0, \omega, \eta))$	0.0388 ± 0.0142
$\mathcal{B}(\tau^- \to K^- 2\pi^- 2\pi^+ \nu_\tau \;(\mathrm{ex.}K^0))$	0.0001 ± 0.0001
$\mathcal{B}(\tau^- \to K^- 2\pi^- 2\pi^+ \pi^0 \nu_\tau \text{ (ex.} K^0))$	0.0001 ± 0.0001
$\mathcal{B}(\tau^- \to X_s^- \nu_{\tau})$	2.9078 ± 0.0478

$$|V_{us}|_{\tau s} = \sqrt{R_s} / \left[\frac{R_{VA}}{|V_{ud}|^2} - \delta R_{\text{theory}} \right]$$

$$\mathscr{B}_s = (2.908 \pm 0.048)\%$$

$$\mathscr{B}_{all} = (99.93 \pm 0.11)\% \text{ instead of } 100\% \text{ to account for correlations}$$

$$\& \text{ unobserved hadronic modes}$$

$$\mathscr{B}_{hadrons} = \mathscr{B}_{all} - \mathscr{B}_e - \mathscr{B}_{\mu}$$

$$\mathscr{B}_{VA} = \mathscr{B}_{hadrons} - \mathscr{B}_s = (61.82 \pm 0.10)\% \text{ To get R, we normalize by}$$

$$\mathscr{B}_e = (17.84 \pm 0.04)\%$$

• Improve $\mathscr{B}_e \text{ using}$
• lepton universality
• mass (m_{τ})
• lifetime (τ_s)

Tau physics

Tau mass and lifetime

Tau physics

8

Lepton universality from leptonic decays

 $\begin{pmatrix} g_{\mu} \\ g_{e} \end{pmatrix} = 1.0002 \pm 0.0011$ improved by Belle II [HEP 08 (2024) 205 measurement of $\mathcal{B}_{\tau\mu}/\mathcal{B}_{\tau e}$ [Adachi et al., 2024], was 1.0019 ± 0.0014

Precision ~ [0.20, 0.23] % before B-Factories; ~ [0.14, 0.15] % end of 2024

- Improved due to Belle measurement of τ lifetime [PRL 112 (2014) 031801)
- Lepton universality tests limited by precision of $\mathscr{B}_{\tau\mu/\tau e}$, not any more by τ_{τ}

Tau physics

Lepton universality from hadronic decays

Normalized with muons rather than helicity-suppressed electronic channel.

Measure:

$$m_{\tau}, \tau_{\tau}, \mathcal{B}(\tau^- \to h^- \nu_{\tau}) \ [h^- = \pi^-/K^-]$$

Radiative corrections: $\delta_{\pi} = (0.18 \pm 0.57) \%$, $\delta_{K} = (0.97 \pm 0.58) \%$ M. A. Arroyo-Ureña et al., Phys. Rev. D 104 (2021) L091502

πΚ

Tau physics

Lepton Universality Sensitivity

Tau physics

Lepton universality improved $|V_{us}|$ from inclusive τ decays

- $\begin{cases} \bullet \mathscr{B}_e \text{ from standalone measurements} \\ \bullet \mathscr{B}_e \text{ from } \mathscr{B}_\mu \text{ measurements assuming } |g_\mu/g_e| = 1 \\ \bullet \mathscr{B}_e \text{ from } m_\tau \& \tau_\tau \text{ measurements assuming } |g_\tau/g_\mu| = 1 \end{cases}$

Correlated average :

$$\mathcal{B}_e^{\mathrm{uni}} = (17.815 \pm 0.023)\%$$

 \Rightarrow improvement by almost a factor of 2 from the value of $B_e = (17.84 \pm 0.04)\%$ We use $\mathcal{B}_{e}^{\text{uni}}$ to obtain the ratios

 $R_{\text{had}} = \frac{\Gamma(\tau \to \text{hadrons})}{\Gamma(\tau \to e\overline{\nu}_e \nu_{\tau})} = \frac{\mathcal{B}_{\text{had}}}{\mathcal{B}_e^{\text{uni}}} = 3.634 \pm 0.008, \quad R_s = 0.1632 \pm 0.0027, \quad R_{\text{ud}} = 3.470 \pm 0.008.$ $|V_{us}|_{\tau s} = \sqrt{\frac{R_{VA}}{|V_{ud}|^2} - \delta R_{\text{theory}}} \qquad \Rightarrow |Vus| = (0.2184 \pm 0.0021)$ [relative error = 0.96%]

The measured |V_{us}| values & errors are numerically almost identical using

- measured $B_{had} = B_{non-strange} + B_s$ from non-unity-constrained τ BR fit, OR
- $B_{had} = 1 (1 + f_{\mu}/f_e) B_e^{univ}$ from unity constrained τBR fit

Dominant contribution to error on $|V_{us}|$ comes from error on the measured R_{strange}. $\delta R_{\text{theory}} = 0.239 \pm 0.032$ [Gamiz 2007] contributes to 0.47% of the error on |V_{us}|.

$|V_{us}|$ from exclusive τ decays

- Independent of convergence of OPE/FESR, as many QCD corrections cancel.
- EW corrections $S_{EW}{=}1.01910\pm0.00030$ [Erler 2004, Pich 2014, Davier 2023]
- $\delta_{\tau K/\tau\pi}$ known [Decker & Finkmeier 1995, Marciano 2004, Arroyo-Ureña 2021]
- •All non-perturbative QCD effects encapsulated as ratio of meson decay constants:
- $f_K/f_\pi = 1.1934 \pm 0.0019$, $f_K = 155.7 \pm 0.3$ MeV [FLAG 2021 Lattice Averages]

Summary of |V_{us}| results

Figure 1: Constraints in the $V_{ud}-V_{us}$ plane. The partially overlapping vertical bands correspond to $V_{ud}^{0^+ \to 0^+}$ (leftmost, red) and $V_{ud}^{n, \text{best}}$ (rightmost, violet). The horizontal band (green) corresponds to $V_{us}^{K_{c3}}$. The diagonal band (blue) corresponds to $(V_{us}/V_{ud})K_{c2/\pi_{c2}}$. The unitarity circle is denoted by the black solid line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yellow $(V_{ud} = 0.97378(26), V_{us} = 0.22422(36), \chi^2/\text{dof} = 6.4/2, p-\text{value } 4.1\%)$, it deviates from the unitarity line by 2.8 σ . Note that the significance tends to increase in case τ decays are included.

V. Cirigliano, A. Crivellin, M. Hoferichter, M. Moulson, Phys.Lett.B 838 (2023) 137748 e-Print: 2208.11707 [hep-ph]

HFLAV 2023 fit [e-Print: 2411.18639 [hep-ex]]

$ V_{us} _{ m uni} = 0.2272 \pm 0.0011$	0.0σ	$\left[\sqrt{1- V_{ud} ^2- V_{ub} ^2} (\text{CKM unitarity})\right]$
$ V_{us} _{K\ell 3} = 0.2233 \pm 0.0005$	-3.2σ	$\left[\mathcal{B}_{K\ell 3} \hspace{0.1in} \left[106 ight] ight] ,$
$ V_{us} _{K\ell 2} = 0.2250 \pm 0.0005$	-1.7σ	$\begin{bmatrix} \mathcal{B}_{K\ell 2} & [106] \end{bmatrix}$,
$ V_{us} _{\tau s} = 0.2184 \pm 0.0021$	-3.6σ	$\left[\mathcal{B}(\tau^- \to X_s^- \nu_\tau)\right] ,$
$ V_{us} _{ au K/\pi} = 0.2229 \pm 0.0019$	-2.0σ	$\left[\mathcal{B}(\tau^- \to K^- \nu_\tau) / \mathcal{B}(\tau^- \to \pi^- \nu_\tau)\right] ,$
$ V_{us} _{\tau K} = 0.2224 \pm 0.0017$	-2.3σ	$[\mathcal{B}(\tau^- \to K^- \nu_\tau)]$.
$ V_{us} _{\tau \rm excl} = 0.2225 \pm 0.0017$	-2.3σ	[average of τ exclusive measurements]
$ V_{us} _{\tau} = 0.2209 \pm 0.0014$	-3.4σ	[average of 3 $ V_{us} \tau$ measurements]

Tau physics

14

In SM, finite neutrino mass allows LFV via following diagram:

 $\mathcal{B}(\tau^{\pm} \to \mu^{\pm} \gamma) \qquad \text{Lee \& Shrock: } \underline{Phys.Rev.D 16 (1977) 1444} \\ = \frac{3\alpha}{128\pi} \left(\frac{\Delta m_{23}^2}{M_W^2}\right)^2 \sin^2 2\theta_{\text{mix}} \mathcal{B}(\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau}) \\ \text{With } \Delta \sim 10^{-3} \text{ eV}^2, \ M_W \sim \mathcal{O}(10^{11}) \text{ eV} \\ \approx \mathcal{O}(10^{-54}) \ (\theta_{\text{mix}} : \text{max})$

many orders below experimental sensitivity!

Any observation of LFV \Rightarrow unambiguous signature of new physics \Rightarrow Several models prediction LFV in tau sector at 10-8 - 10-10 levelwhich is just below current experimental sensitivityTau physics15Swagato Banerjee UofL

New Physics illustrations for LFV in τ decays

• Expected rates from New Physics are slightly less than current experimental bounds.

Salient features of LFV in τ decays from e^+e^- colliders

Known initial conditions (beam energy constraint)
Clean environment (fewer backgrounds)

Higher signal efficiency is foreseen at Belle II than at Belle or BaBar

- improved vertex tracking / calorimetry / muon detectors
- momentum dependent particle identification optimizations
- inclusive tagging optimized using BDT for signal extraction

 $e^+e^- \rightarrow \tau^+\tau^-$

$\tau \rightarrow \mu \mu \mu$ at B-Factories

$\tau \rightarrow \mu \mu \mu$ at B-Factories

Observed (expected) limits: $\mathscr{B}(\tau \rightarrow \mu \mu \mu) < 1.9(1.8) \times 10^{-8}$ with 424 fb⁻¹

 ε_{sig} = 20.42 ± 0.06% ~3x larger than Belle & Expected BKG: $0.7^{+0.6}_{-0.5}$ events

CMS: $\mathscr{B}(\tau \to \mu \mu \mu) < 2.9 \text{ x } 10^{-8} \text{ at } 90\% \text{ C.L. with } 131 \text{ fb}^{-1}$ LHCb: $\mathscr{B}(\tau \to \mu \mu \mu) < 4.6 \text{ x } 10^{-8} \text{ at } 90\% \text{ C.L. with } 3 \text{ fb}^{-1}$

Phys.Rev.D 81 (2010) 111101 arXiv:2312.02371 [hep-ex]

Swagato Banerjee UofL

JHEP 02 (2015) 121 arXiv:1409.8548 [hep-ex]

Tau physics

Ongoing search for $\tau \rightarrow \mu \gamma$ at Belle II

Analysis details

BELLE2-NOTE-PH-2025-02

- Signal and background on-resonance samples MCri & MCrd.
 - $\circ \quad \boldsymbol{\tau}^{\pm} \rightarrow \boldsymbol{\mu}^{\pm} + \boldsymbol{\gamma} \left(4 \, \mathrm{M} + 4 \, \mathrm{M} \right)$
 - $\mathbf{\tau}^{\dagger}\mathbf{\tau}^{-}$ (8 ab⁻¹ + 1.4 ab⁻¹), $\mu^{\dagger}\mu^{-}(\gamma)$ (1 ab⁻¹ + 1.4 ab⁻¹), + others.
- Data: On & off-resonance data ~ 427 fb⁻¹
- Moriond 2024 corrections.

Ongoing search for $\tau \rightarrow \mu \gamma$ at Belle II

- <u>Strategy</u>:
 - Reconstruct 1x1 prong topology.
 - Improved selection using BDT (11 variables).
 Better performance with less data then Belle!
 - Signal extraction via unbinned ML fit in 2D.
 - Sideband data included in fit to estimate final background, and relative fractions of ττ, μμγ.

 In RC review and finalizing systematic implementation into the limit

Tau physics

2

Estimates of experimental sensitivity in LFV searches

$B_{\rm UL}^{90} = N_{\rm UL}^{90} / (N_\tau \times \varepsilon)$

 $\underline{\varepsilon}$: high statistics signal MC simulated for different Data-taking periods

$\epsilon = Trigger \cdot Reco \cdot Topology \cdot PID \cdot Cuts \cdot Signal-Box$							nal-Box
90% 70%		70%	70%	50%	50% 50%		
Cumulative:							
		90%	63%	44%	22%	11%	~5%

	\sqrt{s}	Luminosity (L)	$N_{\tau} = 2L\sigma$
BaBar	10.58 GeV	0.5 ab ⁻¹	1 x10 ⁹
Belle	10.58 GeV	1 ab-1	1.8 x10 ⁹
Belle II	10.58 GeV	50 ab-1	9.2 x10 ¹⁰
HL-LHC	14 TeV	3 ab-1	1015
STCF	2-7 GeV	1 ab-1	7.0 x10 ⁹
FCC-ee	91.2 GeV	150 ab-1	3.4 x 10 ¹¹

S. Banerjee University of Victoria British Columbia · Canada Lepton Flavor Violation

Current status of LFV τ decays

Tau physics

23

Projected limits at Belle II using expected limits

Belle II to probe LFV in several channels $\simeq \mathcal{O}(10^{-10})$ to $\mathcal{O}(10^{-9})$ with 50 ab⁻¹

Tau physics

Summary of experimental prospects of τ decays

Tau physics

Global analysis of all LFV data

SMEFT for CLFV

τ and B CLFV decays

-

-- -

 \checkmark = tree \checkmark = loop

V.Cirigliano, K.Fuyuto, C.Lee, E.Mereghetti, B.Yan, JHEP03, 256 (2021) arXiv:2102.06176 [hep-ph]

. . . .

-

Tau physics

Global fit: $\tau \rightarrow e$ decays and transitions with τ in the final state

Model-independent probes of new physics at scale (Λ) encoded as Wilson coefficients (C_n) via EFT approach.
For certain operators, Higgs decay and LFV Drell-Yan compete, which are assumed to scale by factor of 4 at HL-LHC.
For many other operators, bounds dominated by τ and B-decays.

Tau physics

27

Global fit: $\tau \rightarrow \mu$ decays and transitions with τ in the final state

Model-independent probes of new physics at scale (Λ) encoded as Wilson coefficients (C_n) via EFT approach.
For certain operators, Higgs decay and LFV Drell-Yan compete, which are assumed to scale by factor of 4 at HL-LHC.
For many other operators, bounds dominated by τ and B-decays.

Tau physics

Towards a global fit

- turn on all V/A couplings to L leptons & *d*-type quarks
- contributions to hadronic au decays cancel for $[C_{Ld}]_{bb} \sim -[C_{LQD}]_{bb}$
- $\tau \rightarrow e \ell^+ \ell^-$ weaker than current LHC and project EIC
- need collider or η_b decays

Courtesy: Emanuele Mereghetti, Kaori Fuyuto [Tau2023]

Tau physics

- The mystery of |V_{us}| deepens from kaon and tau sector
 - Lattice calculations providing intriguing insights to calculate δR_{theory}: Reduce theory error down to 0.0007, but long distance isospin breaking corrections pending ETC collaboration, Phys.Rev.Lett. 132 (2024) 26, 261901, e-Print: 2403.05404 [hep-lat]

	Observed Limits	Projected Limits				
	Experiment		UL (obs)	Experiment	Luminosity	UL (exp)
$\tau^- \to \mu^- \mu^+ \mu^-$	$\tau^- \rightarrow \mu^- \mu^+ \mu^-$ Belle II [Tau2023]		1.9×10^{-8}	Belle II [2207.06307]	$50 {\rm ab}^{-1}$	3.6×10^{-10}
	Belle [Phys.Lett.B 687 (2010) 139]	$782 \ {\rm fb}^{-1}$	2.1×10^{-8}			
	BaBar [Phys.Rev.D 81 (2010) 111101]	$468 \ {\rm fb}^{-1}$	3.3×10^{-8}			
	LHCb [JHEP 02 (2015) 121]	$3 \mathrm{fb}^{-1}$	4.6×10^{-8}	LHCb [1808.08865]	$300 {\rm ~fb^{-1}}$	$O(10^{-9})$
	CMS [Phys. Lett. B 853 (2024) 138633]	$131 {\rm fb^{-1}}$	2.9×10^{-8}	CMS [CMS-TDR-016]	3 ab^{-1}	3.7×10^{-9}
	ATLAS [Eur.Phys.J.C 76 (2016) 5, 232]	$20 ~{ m fb}^{-1}$	3.8×10^{-7}	ATLAS [ATL-PHYS-PUB-2018-032]	3 ab^{-1}	1.0×10^{-9}
				STCF [Eur.Phys.J.C 83 (2023) 10, 908]	1ab^{-1}	1.4×10^{-9}
				FCC-ee [1811.09408]	$150 \ {\rm ab}^{-1}$	$\mathcal{O}(10^{-10})$

- Observation of LFV in the charged lepton sector would completely change our understanding of physics and herald a new period of discoveries in particle physics. Synergies between different experiments compliment discovery potential/confirmation.
- Now is a very interesting era in the searches for LFV in decays of the τ lepton, as the current limits will improve by an order of magnitude down to a few parts in 10⁻¹⁰ to 10⁻⁹ at the Belle II and other experiments.
- Similar sensitivities will be probed at ATLAS, CMS & LHCb with high luminosity upgrade.
- Proposed experiments at STCF, EIC & FCC-ee will continue searches for LFV in tau sector.