Measurement of CP Asymmetries in $B^0 \rightarrow \eta' K^0$ decays

S. Lacaprara, J. Kandra, <u>N. Brenny</u>, C. Chen, M. Veronesi, S. Cuccuini, G. Finocchiaro, A. Passeri

2025 Belle II Summer Workshop June 25th, 2025

Motivation

- Most sensitive analysis of sin $2\beta^{eff}$ in $b \rightarrow q \overline{q} s$ loops
- Belle II published with run1 dataset, now repeat with run1+run2
 - 🔽 Use GNN flavor tagger
 - 🗹 Include 5 additional modes
 - V Resolve PID and mass window inefficiencies
- Expecting sensitivity on C and S similar to world's best

 $B^0 \rightarrow \eta'_{\eta(\gamma\gamma)\pi^+\pi^-} K^0_{\pi^+\pi^-}$ $B^0 \rightarrow \eta'_{\rho\gamma} K^0_{\pi^+\pi^-}$ $B^{0} \to \eta'_{\eta(3\pi)\pi^{+}\pi^{-}} K^{0}_{\pi^{+}\pi^{-}} \\ B^{0} \to \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}} K^{0}_{\pi^{0}\pi^{0}}$ $B^0 \to \eta'_{\rho\gamma} K^0_{\pi^0 \pi^0}$ $B^{0} \rightarrow \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K_{L}^{0}$ $B^{0} \rightarrow \eta'_{\eta(3\pi)\pi^{+}\pi^{-}}K_{L}^{0}$

New since run1 Belle II analysis

Summary

- Focus on $K_S^0 \rightarrow \pi^0 \pi^0$ modes
- Reconstruction, selection and signal extraction fit

$$B^{0} \rightarrow \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{\pi^{+}\pi^{-}}$$
$$B^{0} \rightarrow \eta'_{\rho\gamma}K^{0}_{\pi^{+}\pi^{-}}$$
$$B^{0} \rightarrow \eta'_{\eta(3\pi)\pi^{+}\pi^{-}}K^{0}_{\pi^{+}\pi^{-}}$$
$$B^{0} \rightarrow \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{\pi^{0}\pi^{0}}$$
$$B^{0} \rightarrow \eta'_{\rho\gamma}K^{0}_{\pi^{0}\pi^{0}}$$
$$B^{0} \rightarrow \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{L}$$
$$B^{0} \rightarrow \eta'_{\eta(3\pi)\pi^{+}\pi^{-}}K^{0}_{L}$$

$$K_S^0 \rightarrow \pi^0 \pi^0$$
 reconstruction

- Normally, we use the π^0 standard lists
 - Mass windows in the lists are optimized assuming IP production
- For $K_S^0 \to \pi^0 \pi^0$, the π^0 is produced away from the IP
- This biases $M(\pi^0)$ and $M(K_S^0)$
 - $|\vec{p}(\gamma)|$ incorrect
 - Combinations of γ to reconstruct π^0 , etc. incorrect

$$B^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{0}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{1}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{2}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{3}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{3}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{3}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{3}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{3}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$\xrightarrow{\times 10^{4}}$$

$$g_{3}^{0} \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi^{+} \pi^{-}) K_{S}^{0} (\rightarrow \pi^{0} \pi^{0})$$

$$\xrightarrow{\times 10^{4}}$$

$$\xrightarrow{$$

Unbiasing the K_S^0 , π^0 mases $\frac{1}{10}$

- 1. TreeFit K_S^0 with IP constraint and π^0 mass constraint
 - Must use shifted π^0 mass window initially
 - This unbiases the K_S^0 mass
- 2. TreeFit B^0 with IP constraint K_S^0 mass constraint
 - This unbiases the π^0 mass
- 3. TreeFit B^0 with IP constraint and K_S^0 and π^0 mass constraints
- Then, can apply mass windows on unbiased K^0_S and π^0 masses

- $K_S^0 \to \pi^0 [\to \gamma \gamma] \pi^0 [\to \gamma \gamma]$
- $\eta \rightarrow \gamma \gamma$
- Order γ , π^0 by energy
- Reduces complexity of optimization
- More intuitive π^0, γ variables

Photon preselection

- 34% of K_S0_isSignal!=1 events have at least one beam background photon
- Of the 34%, 79% of them have a beam background photon as the less energetic photon from the less energetic pi0
- Loose cut on photon MVAs (fakePhotonSuppression and beamBackgroundSuppression) > 0.1
 - 99% sig eff, 18% bkg rej

 $B^{0} \rightarrow \eta \prime [\rightarrow \rho \gamma] K^{0}_{S} [\rightarrow \pi^{0} \pi^{0}] + B^{0} \rightarrow \eta \prime [\rightarrow \eta [\rightarrow \gamma \gamma] \pi^{+} \pi^{-}] K^{0}_{S} [\rightarrow \pi^{0} \pi^{0}]$

Data/MC comparison in $M(K_S^0)$ sidebands

- Validate KS00 BDT variables in $M(K_S^0)$ sidebands
- Shapes are reasonable

Normalized to area

1.2

CS BDT

- Dominant background is from continuum
- Train with off resonance data
 - Data/MC and offres/onres agree
- Can train one BDT for both modes
- Signal: TM signal events Background: udsct events
- Most important variables:
 - cosTBTD

sphericity

CS output in sidebands

$$B^0 \rightarrow \eta \prime [\rightarrow \eta [\rightarrow \gamma \gamma] \pi^+ \pi^-] K^0_S [\rightarrow \pi^0 \pi^0]$$

$$B^0 \to \eta / [\to \rho \gamma] K_S^0 [\to \pi^0 \pi^0]$$

Joint optimization

- Optimize mass windows + $E\left(\gamma_{\eta^{(\prime)}}\right)$ + CS BDT simultaneously using optuna
- Can improve figure of merit by 8.3%, 9.8% for ch4, ch6 respectively compared to standard optimization in series
- Optimizer favors different window widths*
 - Ch4: $M(\eta)$: 3 σ , $M(\eta')$: 2.5 σ , $M(K_S^0)$: 2.5 σ
 - Ch6: $M(\rho^0)$: 2 σ , $M(\eta')$: 1 σ , $M(K_S^0)$: 3 σ

*

- σ is a bit misleading due to large tail
- σ is calculated from weighted average of Gaussians (see backup)

Channel	Change in signal yield in SR [%]	Change in background yield in SR [%]	Change in FOM in SR [%]
ch4	+15.2	+8.1	+8.3
ch6	-2.1	-34.4	+9.8

After all selection

- Use KS00 BDT score as BCS
- Yields on par with BaBar for ch4, less for ch6
- Both channels have much better purity than BaBar

Signal definition

- Consider a candidate from a signal event to be truth-matched if the tracks are truth matched – ignore incorrect clusters
- They don't improve/diminish the vertex resolution

Ch6 $(\eta' \rightarrow \rho^0 [\rightarrow \pi^+ \pi^-] \gamma)$

• Fix signal PDF tails

 Validated with pure and bootstrapped toys without significant bias

Summary

- Selection of $K_S^0 \to \pi^0 \pi^0$ modes optimized
- Other modes selected in parallel
- ~3000 signal events
 - ~3500 in Belle
 - ~2500 in BaBar

Backup

Photon, pi0 ordering

$$B^0 \to \eta / [\to \eta [\to \gamma \gamma] \pi^+ \pi^-] K^0_S [\to \pi^0 \pi^0]$$

$$B^0 \to \eta \prime [\to \rho \gamma] K^0_S [\to \pi^0 \pi^0]$$

ROC curves for different BDT trainings

ch4 training applied to ch4 ch6 training applied to ch4 ch4+ch6 training applied to ch4

ch4 training applied to ch6 ch6 training applied to ch6 ch4+ch6 training applied to ch6 ch4 training applied to ch4+ch6 ch6 training applied to ch4+ch6 ch4+ch6 training applied to ch4+ch6

ch4

 $M(K_S^0)$ sideband

ch6

ch4 sig vs. ch6 sig

ch4 bkg vs. ch6 bkg

Stability of optimization / similarity in optimized cuts (ch6)

No results within stat. unc. of max FOM with same N_σ for all mass windows

Parameter distributions for ch4 within statistical uncertainty of the best trial (FOM = 8.14 \pm 0.10) N=56/500

Projections of FOM curves (ch6)

Projections of FOM curves (ch4)

Continuum suppression variables comparison between channels

 $B^{0} \rightarrow \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{\pi^{+}\pi^{-}}$ $Ch3 \qquad B^{0} \rightarrow \eta'_{\rho\gamma}K^{0}_{\pi^{+}\pi^{-}}$ $B^{0} \rightarrow \eta'_{\eta(3\pi)\pi^{+}\pi^{-}}K^{0}_{\pi^{+}\pi^{-}}$ $B^{0} \rightarrow \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{\pi^{0}\pi^{0}}$ $Ch6 \qquad B^{0} \rightarrow \eta'_{\rho\gamma}K^{0}_{\pi^{0}\pi^{0}}$ $B^{0} \rightarrow \eta'_{\eta(\gamma\gamma)\pi^{+}\pi^{-}}K^{0}_{L}$ $B^{0} \rightarrow \eta'_{\eta(3\pi)\pi^{+}\pi^{-}}K^{0}_{L}$

- In signal region $-0.15 < \Delta E < 0.1$ and $M_{\rm bc} > 5.27$
- Signal is truth matched (B0ch?_etap_tm==1)
- Should we use event shape using the entire event?

BifurGauss₁+BifurGauss₂+Gauss

Gauss₁+Gauss₂+Gauss₃

 $Gauss_1 + Gauss_2$

'B0 vertex': 'chiProb>=0'

Resonant mass fits

BifurGauss+Gauss

BifurGauss₁+BifurGauss₂+Gauss

 $Gauss_1 + Gauss_2$

'B0 vertex': 'chiProb>=0'
'TDCPV_qqs skim': 'skim_qqs==1'
'R2': 'R2<0.5'
'KS00 mass': '0.459<K_S0_M_bf<0.535'
'rho0 mass': '0.539<etap_rho0_M_bf<0.874'
'etap mass': '0.927<etap_M_bf<0.977'
'photon energy': 'etap_gamma_E>0.23'
'photon MVA': 'K_S0_pi0_high_gamma_high_fakePhotonSuppression>0.1
and K_S0_pi0_high_gamma_low_fakePhotonSuppression>0.1
and K_S0_pi0_high_gamma_low_beamBackgroundSuppression>0.1
and K_S0_pi0_low_gamma_high_beamBackgroundSuppression>0.1
and K_S0_pi0_low_gamma_high_beamBackgroundSuppression>0.1
and K_S0_pi0_low_gamma_high_beamBackgroundSuppression>0.1
and K_S0_pi0_low_gamma_high_beamBackgroundSuppression>0.1
and K_S0_pi0_low_gamma_high_beamBackgroundSuppression>0.1
and K_S0_pi0_low_gamma_high_beamBackgroundSuppression>0.1

Optuna results ch4

Optuna results ch6

Full picture

