# Detector control system / Slow control: Overview of KLM HV control



#### Naveen Kumar Baghel

June 25, 2025

2025 US Belle II Summer Workshop





#### Introduction



Detector Control System

- Courtesy:Kunigo-san @ KEK
- Derived from a common word: Industrial Control System
- To take data, sub-detector front end needs to be configured and initialized, and during data taking, also requires monitoring detector conditions like temperature, gas, and voltage. These operations are collectively referred to as **slow control**.
- o and now the management of these detector-wide operations falls under the **DCS** group.

## Targets of the DCS

- > jobs related to detector control
  - High voltage control
  - Low voltage control
    - > detector setting
      - o V-threshold
      - o masking
      - o interface to the database
        - > detector environment
          - o thermal monitoring
          - o gas monitoring
          - o chiller, etc

- > detector safety
  - HV permission (ARO)
  - interlock
  - o cabling, etc

#### **B2NSM** and **B2EPICS**



A gateway server (daqnet) links the two networks, allowing NSM2 daemons and EPICS IOCs to inter-operated.

- Operators control both networks via a single interface (e.g., Phoebus GUI).

## HV control, permission, & ARO flag

To have hand-shake between accelerator operations (SuperKEKB) and detector operations (Belle II), a mutual agreement is done based on SuperKEKB Injection status and Belle II HV Status for safe and smooth operations.



The global Belle II HV status is defined in HVMASTER, a module that takes into account the HV status of all sub-detectors.

New Scheme: In the new system, each subsystem can define its own injection enable signals regardless of its HV status, based on its vulnerability to beam injections.



## HV control, permission, & ARO flag



Current Status: Feedback and review of each sub-system scheme is in progress

#### **HV** states and transitions

- Stable states
  - OFF
  - STANDBY
  - PEAK
- Transition states
  - TRANSITION
  - RAMPINGUP
  - RAMPINGDOWN
  - RECOVERING
  - TRUNINGON
  - TURNINGOFF
- Error states
  - ERROR
  - TRIP
  - INTERLOCK
  - MASKED



All states are defined in the source code here.

## Monitoring by CR shifters

- To check the any errors are indicated in the HV control panel, in case of any error follow the RECOVERY procedures.
- ☐ To check if any interlock signals are indicated in the interlock panel.
- ☐ To check the mattermost chat notifications.

Belle II Shifter Operation Manual



#### **HV** error states

- When HV goes to "ERROR", "TRIP", "INTERLOCK" or "UNKNOWN", the data taking is "PAUSED" in the RC panel. Do not "STOP" the current run.
  - > "ERROR" and "TRIP" can be fixed by clicking the "RECOVER" button in the HV panel.
  - > "INTERLOCK" and "UNKNOWN" need to be fixed by the subsystem experts.
- When the error state is gone, you can "RESUME" the run.



#### KLM HV control

- □ B/E-KLM need HV for operation. Scintillators need 75V, and RPCs need 8.2kV (-3.5kV & +4.7kV).
- There are 5 CAEN HV mainframes in E-hut. Each of them provides HV to KLM sectors.





## **KLM HV Components**

- ☐ All KLM HV components are in E-hut.
  - ☐ There are two HV control PC named klmhv03 and klmhv02.
  - ☐ They are controlled by the run control PC named klmpc03 via bdaq network.
  - ☐ In both HV PCs, same scripts are running and switching time is ~10 minutes.





During Run operations all task are managed through these PCs and a remote shifter can make access through bdaq account.

#### KLM HV GUI



## **KLM HV Test Bench**

#### Real System



#### **KLM HV Test Bench**

- ☐ A CAEN HV crate simulator was developed by the UofL group to address issues in KLM HV control.
  - ☐ The daq\_slc setup was successfully installed and compiled on a standalone PC (not connected to DAQNet or B2NSM)
  - ☐ A dedicated <u>DAQ database</u> was prepared and configured to support the KLM HV daemon.
  - ☐ Details:
    - ☐ A **Python script** interfaces with the CAEN database to mimic basic HV crate behavior.
    - ☐ It simulates key HV states: **RAMPING UP, RAMPING DOWN, ON, OFF**.
    - The simulator can be extended to include various <u>error message scenarios</u>.



**Main Advantage**: Allows testing and validation of HV control scripts before deploying them to the real KLM system, improving reliability and reducing downtime.

#### **Recent Issues**

- ☐ KLM HV Sudden turn off
  - ☐ Certain negative KLM HV modules randomly turn off without entering RAMPDOWN or TRIP states, causing the corresponding positive modules to OVP trip.
  - ☐ First observed on Jan 24, 2024 (Crate 3, Slot 15), with similar incidents later seen across other slots of Crate 3.
  - ☐ The firmware of the crate 3 has already been changed. But, the problem is still existing.





!024-02-13 01:08:05] [INFO] crate[3].slot[9].channel[12].state = OFF

- $\Box$  Temporary fix:
  - □ The HV daemon is now modified to detect this behavior, if it occurs during STANDBY/PEAK, it enters ERROR state, recoverable via RECOVER\_ERROR → STANDBY.

#### **Recent Issues**

- ☐ Issue with UNKNOWN state
  - ☐ Caused by B2NSM network failures leading to unresponsive CAEN HV API, leaving KLM HV stuck in its last known state.
  - ☐ Issue was often missed by shifters, despite being logged, due to delayed API responses.
  - ☐ <u>Fix</u>: Now, the system triggers an ERROR signal within 25 seconds to promptly flag the issue.
- ☐ Mixed Error & Interlock state issue
  - ☐ Occasionally, scintillator crates show ERROR while RPC crates show INTERLOCK, causing the KLM HV state to oscillate between the two.
  - ☐ To fix this, ERROR and soft TRIP signals are suppressed when INTERLOCK is active.
  - ☐ <u>Fix</u>: The solution has been successfully tested using dummy interlock signals on the real system, ensuring a stable INTERLOCK-only status.





#### **KLM Errors**



Error distributions in 2024.

- ☐ These errors fall into two main categories:
  - ☐ **HV errors** (e.g., sudden turn-offs, unknown/error states in HV crates), and
  - □ **DAQ errors** (e.g., link issues, FEE errors, tag/time mismatches).
- ☐ The most frequent causes of these errors are:
  - 1. TTLOST and TTDOWN: These occur due to miscommunication between the DC and the FTSW.
  - 2. B2LLOST and B2LDOWN: These arise from miscommunication between the DC and the PCIe40.

### **Future Plans**

➤ Master recovery GUI



- ➤ Low voltage monitoring
  - Monitor stability of  $\pm 12V$  low voltage power supply to KLM FEE

## Backup

## KLM Power supply



## **KLM CAEN HV Database**

| crate | slot | ch | pw | v0set       | vmon        | imon | i0set      | rup       | rdwn      | svmax       | status |
|-------|------|----|----|-------------|-------------|------|------------|-----------|-----------|-------------|--------|
| 2 1   | 11   | 20 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 5 i   | 4    | 3  | 1  | 73.000000   | 73.000000   | 25.0 | 180.000000 | 5.000000  | 5.000000  | 100.000000  | 1      |
| 3     | 5    | 6  | Θ  | 0.000000    | 20          | 3.5  | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 0      |
| 3 i   | 9    | 22 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 3 i   | 10   | 4  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 2     | 5    | 5  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 1 j   | 5    | 5  | 1  | 73.000000   | 73.000000   | 25.0 | 180.000000 | 5.000000  | 5.000000  | 100.000000  | 1      |
| 3 j   | 8    | 1  | Θ  | 2700.000000 | 20          | 3.5  | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | Θ      |
| 5 j   | 5    | 6  | 1  | 73.000000   | 73.000000   | 25.0 | 180.000000 | 5.000000  | 5.000000  | 100.000000  | 1      |
| 3     | 10   | 3  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 2     | 5    | 9  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 3     | 11   | 7  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 1     | 5    | 6  | 1  | 73.000000   | 73.000000   | 25.0 | 180.000000 | 5.000000  | 5.000000  | 100.000000  | 1      |
| 2     | 9    | 12 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 3     | 8    | 20 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 2     | 8    | 7  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 3     | 9    | 16 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 2     | 5    | 17 | 0  | 0.000000    | 20          | 3.5  | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | Θ      |
| 3     | 9    | 15 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 1     | 5    | 4  | 1  | 73.000000   | 73.000000   | 25.0 | 180.000000 | 5.000000  | 5.000000  | 100.000000  | 1      |
| 2     | 9    | 15 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 2     | 10   | 22 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 3     | 9    | 19 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 3     | 5    | 21 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 3     | 9    | 4  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 2     | 10   | 7  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 3     | 7    | 22 | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 1     | 3    | 1  | 1  | 73.000000   | 73.000000   | 25.0 | 180.000000 | 5.000000  | 5.000000  | 100.000000  | 1      |
| 3     | 10   | 8  | 1  | 2700.000000 | 2700.000000 | 25.0 | 80.000000  | 30.000000 | 30.000000 | 3500.000000 | 1      |
| 2     | 15   | 7  | 1  | 3900.000000 | 3900.000000 | 25.0 | 200.000000 | 30.000000 | 30.000000 | 6000.000000 | 1      |

A PostgreSQL database has been prepared, which contains detailed information about the KLM HV crates.