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Some definitions I
Probability and statistics have different meanings:

underlying probability A  observed result B

what is the underlying probability A?                observation B

Example:
 the probability of heads is 50%             flipping a coin 10 times gives 4 heads, 6 tails

 you observe 4 heads in 10 flips            best guess of probability of heads is 0.40
          (the “point estimate”) 

Blue is probability, green is statistics. If you measure 4 heads in 10 flips, avoid saying “the most 
probable fraction of heads is 40%” – you should say the most likely fraction is 40%

Probability Density Function (PDF): 
 given a PDF P (x), the probability of obtaining x in the interval (a,b) is the integral

 Expectation value or Mean:

 Dispersion around the mean or Variance: 

 Standard deviation: 

∫
b

a

P(x) dx

µ ≡

∫ +∞

−∞

xP(x) dx

V ≡

∫ +∞

−∞

(x − µ)2 P(x) dx

σ ≡
√
V or σ

2
= V

(for a Gaussian distribution, 
±s contains 68.3% of the area)
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Some definitions II

90% confidence interval: 
 Given an observation B, the likelihood that the true value of a lies in the interval (a,b) is 0.90.

68.3% confidence interval: 
 Given an observation B, the likelihood that the true value of a lies in the interval (a,b) is 0.683.

Likelihood function:
 The function L(x) that expresses the likelihood of a having a specific true value. 

 For a 90% confidence interval (a,b): 

  For a 68.3% confidence interval (a,b):

 Error bars:
 Suppose the most likely value of a is z, and the 68.3% confidence 
 interval is (a,b). We quote both of these results together with the expression:

 Example: if z = 5 and the 68.3% confidence interval is (1,8), then we write:

90% confidence level upper limit x – Bayesian:

90% confidence level upper limit x – frequentist:
  (for observation B)     

∫
b

a

L(x)dx = 0.90

∫
b

a

L(x)dx = 0.683

α = z
+(b−z)
−(z−a)

α = 5
+3
−4∫ ξ

−∞

L(x) dx = 0.90

∫
B

−∞

P(x|µ = ξ) dx = 0.10
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Some definitions III

90% confidence level upper limit x – Bayesian:

90% confidence level upper limit x – frequentist:
   (for observation B) 

 In words: the frequentist upper limit is the value x which, if nature’s true value, would give a 
probability of 10% of measuring a value B or smaller. 

How does one determine this? For simple situations, i.e., known background, one can calculate x 
using the Poisson PDF (see Neyman construction, Zech, Feldman-Cousins). For complicated 
situations, use toy MC.

Coverage: if the upper or lower limit holds for a statistical ensemble, we say “the limit provides 
coverage”   (under-coverage: the limit is not true for an ensemble)

p-value:           (if very small, observation B is suspiciously low)

         (if very small, observation B is suspiciously high) 

∫ ξ

−∞

L(x) dx = 0.90

∫
B

−∞

P(x|µ = ξ) dx = 0.10

p =
∫

B

−∞

P(x|µ = ξ) dx

p =
∫

∞

B

P(x|µ = ξ) dx



A. J. Schwartz  US Belle II Summer School 2025  Probability and Statistics   5

Some common PDFs I
Gaussian distribution:

• 68.3% of the likelihood is within ±1s 
• “standard normal”: µ = 0, s = 1
• Gaussian distributions have a special importance 

due to the Central Limit Theorem: the sum of a 
large number of deviations about mean values is 
distributed according to a Gaussian distribution 
with mean µ1 + µ2 + µ3 + .... and variance V = V1 
+ V2 + V3 ... [or s = √(s1

2 + s2
2 + s3

2...)] 
regardless of what distributions the individual 
deviations follow

P(x) =
1

√
2π σ

e
−(x−µ)2/(2σ2)

P(x) =
1

τ

e
−x/τ

µ

+s-s

Exponential function (e.g., particle lifetime):

• mean value µ = t , but most probable value is 0
• cumulative distribution is the same exponential
• has unusual property that shifting the distribution 

horizontally is equivalent to shifting it vertically 
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Some common PDFs II

Poisson distribution (discrete value):

• µ is a real number, but N is an integer
• most likely value for N is the integer nearest µ
• for µ large (>15), Poisson distribution ® 

Gaussian distribution with mean µ and 
variance µ (s = √µ)

P(N ;µ) =
1

N !
µNe−µ

The Poisson d i s t r i b u t i o n  i s  very asymmetric f o r  small  u and has s t a i l  

t o  the  r i g h t  of the  mean. Quant i ta t ive ly ,  the  asyrmetry i s  expressed by the  

pos i t i ve  skewness c o e f f i c i e n t  (eq.(3.20)) 

which approaches zero when u ge t s  l a rge .  Asymptotical ly,  when u goes towards 

i n f i n i t y  thePoisson  d i s t r i b u t i o n  becomes i d e n t i c a l  t o  t he  normal d i s t r i bu t i on .  
AS rill be seen f r w  Fig .  4.3 t h e s i m i l a r i t y  between these m o  d i s t r i b u t i o n s  i s  
r a t h e r  c l o se  already a t  u=20. 

From eq.(4.20) we observe t h a t  

P(r;u)  - P(=-l;u). , 
and the  p ro bab i l i t y  w i l l  therefore  increase  from r=O,l,Z etc. s o  long as r < u. 
The maximum p robab i l i t y  i s  a t  r = l p l ,  and with an equal ,  ad jacent  maximm a t  
p-1 i f  u i s  an in teger ;  see Fig .  4 . 3 .  

0 2 r  
The Poisson d i s t r i b u t i o n  of eq.(4.20) has been tabula ted  i n  Appendix 

Table A3 f o r  values of  u bemeen 0.1 and 20. Appendix Table A4 gives a s im i l a r  

t abu l a t i o n  of the  e m u l a t i v e  Poisson d i s t r i b u t i o n  0.20 I I I  
The tab les  of t he  Poisson d i s t r i b u t i o n  involve only one parameter and 

are e a s i e r  t o  work with than the  corresponding t ab l e s  of  the  ma-parameter bino- 
mia l  d i s t r i b u t i o n .  Because of the  l i m i t i ng  r e l a t i on sh ip ,  t h e  tab les  of the  
Poisson d i s t r i b u t i o n  r ep re s en t  a convenient approximation of  the  binomial tab les  

when p  i s  small  and n s u f f i c i e n t l y  l a rge  (u=np). 
There e x i s t s  a usefu l  r e l a t i onsh ip  between t he  cumulative Poisson sum 

of eq.(4.25) and the c m l a t i v e  i n t e g r a l  of t he  chi-square d i s t r i b u t i o n ,  which 
I 
1 

w e  s h a l l  d i scuss  i n  Chapter 5. 
0.10 0.10 

'I P ( r i ~ )  
F(x;u) - 1 - f(u;"-Zx+2)du. (4.26) 

0 0.05 0.05 
Herr f(u;V) i s  the  chi-square p.d.f .  with v degrees of freedom, and the  quan t i t y  
on t h e  right-hand s i de  haa been dieplayed graphically Lor d i f f e r e n t  u i n  Fig.5.2. 

. . 0 4 8 12 1 6 r  10 15 20 25 30 r 

I Fig.  4.3. lbc Poisson d i s t r i b u t i o n  for d i f f e r e n t  mean values 11. 

Poisson errors:
Suppose one observes N events; what is nature’s 
mean value µ? (i.e., to calculate a branching fraction). 
Obviously, the best guess for µ is N; but it’s also 
useful to give a confidence interval, i.e., µ Î(a,b) at 
68.3% CL. The convention (frequentist): 
• a is value of µ for which there is 15.87% 

probability of observing  ≥ N events
• b is value of µ for which there is 15.87% 

probability of observing  ≤ N events
Values a, b obtained from tables or online calculators
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Some common PDFs III

Binomial distribution (discrete value):

• p, q  are probabilities of success and 
failure, i.e., p + q = 1 (“heads” and “tails”)

• N, m are integers: m is the subset of N 
with sucess (“heads”)

• Variance of this distribution is Npq

Binomial errors:
Suppose one observes m successes out of N trials (i.e., an 
efficiency e = m/N);  what is nature’s probability of success 
p? Obviously, the best guess for p is m/N; but it’s also 
useful to give a confidence interval, i.e., p Î(a,b) at 68.3% 
CL. The convention: 
• ± the standard deviation = ± √(Npq) is quoted as the 

68.3% confidence interval, since it contains 68.3% of 
the probability. Note: probability ® likelihood is usually 
forbidden but here can be shown to provide coverage

binomial 
coefficient:

P(m;N,p) =

(

N

m

)

pmqN−m (p + q = 1)

(

N

m

)

≡
N !

m! (N − m)!

The variance of t h e  binomial va r i ab l e  i s  therefore  

V(r) - ~ ( r ' )  - (E (d ) '  - n(n-l)p2 + mp - (np)' - np(1-p) - npq. (4.7) 

0.30 0'4:1 1 ,  , n.5 , , n = 5 - One is o f t c n  i n t e r e s t ed  i n  the  quant i ty  z, t h e  relative number of 
I 

successes i n  n t r i a l s .  For t h i s  va r i ab l e  the  mean and variance are g iven  by 

B(r;n,p) P = O . Z  P = 0.5 ~(t) = $ E ( = )  - P ,  (4.8) 
0.20 0.20 

v(;) - (;)z"(r) - * - . (4.9) 

0.10 Exercise 4.1: From the d e f i n i t i o n  of the  cumulative binomial d i s t r i b u t i o n  by 
eqs.(4.1).(4.5), show tha t ,  for  0 2 x 5 n-1. 

F(n;n,p) = I - F(n-x-1;n.l-p). 

I Exercise 4.2: Show f r w  i t s  d e f i n i t i o n  by eq.(3.84) t h a t  the  p robab i l i t y  gene- 

0 2 4 6 8 r  r a t i ng  function f o r  the  binomial d i s t r i b u t i o n  is G(z) = (zp + q)". 

0.30 Exercise 4.3: Show fmm the  d e f i n i t i o n s  eqs.(3.20), (3.21) t h a t  the  asyometry 
and k u r t o s i s  coe f f i c i en t s  of the  binomial d i s t r i b u t i o n  are given by, respeet-  , i v e ly ,  

0.20 YI - ( 1 - 2 p ) I ~ .  = ( ~ - K P ( ~ - P ) ) / ( ~ P ( ~ - P ) ) .  
Observe from the  expression fo r  Y L  t h a t ,  f o r  f i n i t e  n, p < 0.5 (p > 0.5) implies 

B(r;n,p) t h a t  the  d i s t r i b u t i o n  i s  pos i t i ve ly  (negatively) skew and has e t a i l  t o  the  
r i g h t  ( l e f t ) .  Note a l s o  tha t  both coe f f i c i en t s  tend t o  zero when n becomes 
l a rge ,  i nd i ca t i ng  t h a t  the  b immia l  d i s t r i b u t i o n  beeones s im i l a r  t o  t he  normal 

0.10 d i s t r i b u t i o n  (Sects.3.3.3 and 4.8.4). 

I 4.1.2 Example: His tograming events (1) 

As an app l i c a t i on  of the  binomial d i s t r i b u t i o n  suppose t h a t  we f o r  

0 2 4 6 r  0 2 4 6 8 r  some reason are i n t e r e s t ed  i n  j u s t  one p a r t i c u l a r  b i n  of a compound histogram. 
Then A (success) m y  correspond t o  g e t t i n g  an e n t r y  i n  t h i s  p a r t i c u l a r  b i n ,  say 

b i n  number i, and ( f a i l u r e )  corresponds t o  an e n t r y  i n  any o t h e r  b i n  of the  
histogram. With a t o t a l  of  n independent events  the  p roba b i l i t y  f o r  having j u s t  

B(r;n,p) n = 20 I r events i n  b i n  i and the  remaining n-r events d i s t r i bu t ed  over the  o t h e r  b ins  
p - 0 2  is given by the  binomial d i s t r i b u t i o n  law, eq.(4.1). The expected number of 

0.10 

0s20 j;J: events i n  the i - th  b i n  i s  E ( r ) = n p  from eq.(4.6). and the  variance of t h i s  nuar 

be r  V(r) =np( l -p) ,  eq.(4.7) .  

The p robab i l i t y  p f o r  a success i s  s a w  cons tan t  whose exac t  va lue  m y  

0 4 8 12.r 0 4 8 12 16 r , not  be knovn p r i o r  t o  the experiment. men the experiment has been p e r f o m d .  

Fig.  4.1. The binomial d i s t r i b u t i o n  f o r  ind ica ted  values o f  the  parameters n,p.  
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Some common PDFs IV

Relation between Poisson distribution and Binomial distribution:

Suppose you have a sample of N particles, f of which decay “forwards,” b = N- f of which 
decay “backwards.” Let p= probability of forward decay, q = 1-p = probability of backwards 
decay. Since f is a subset of N, the distribution of forward decays follows a binomial 
distribution. If we now release the requirement of fixed N, i.e., N follows a Poisson 
distribution with mean µ, then P  becomes a joint probability as follows:

The last expression is the product of two Poisson distributions: one for forward decays with 
mean pµ, and one for backwards decays with mean qµ. This illustrates the points: 

• binomial distribution + release fixed N ® Poisson   or 
• Poisson from a fixed number of trials ® binomial

P(f ;N, p) =
N !

f ! b!
pfqb (note: f + b =N ; p + q =1)

→
N !

f ! b!
pfqb

(

1

N !
µNe−µ

)

=

(

1

f !
(pµ)fe−pµ

)(

1

b!
(qµ)be−qµ

)
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Other important distributions

χ
2
≡

n
∑

i=1

(

x
i
− µ

σ

)2

χ
2 ≡

n
∑

i=1

(

x
i
− 〈x〉

σ

)2

f(χ2;n) =
1

2n/2 Γ(n/2)

(

χ2
)n/2−1

e−χ2/2

joint ~.d.f. is equal to the product of t6e p.d.f.'a of the t ~ o  Independent 

variables x,.xz (compare Sect.3.5.4) We define two new variables p and $ by 

y E p c o d ,  x2- U = -- - p .in$, 

where 0 I p 5 -. 0 5 4 5 2 ~ .  The transformation from the set xl,rz to the set 

p,$ involves the Sacobian 

Hence the joint p.d.f. in term of the new variables becomes 

f(p.4) - f(xl)f(xr).l~/ - e-lp2 .P , 

, is independent of m. The marginal distribution in P obtained by integre- 
tins over $ (Sect.3.5.5) becomes simply 

- e-'p2.p . 
Since the relation between the variables u and p is 

the p.d.f. for u is given by 

which is seen to be f(u;2), the chi-square distribution with two degrees of 

freedom. 

5.1.3 Properties of the chi-square distribution 
The chi-square distribution of eq.(5.5) is shown in Fig. 5.1 for 

selected values of the parameter v.  

Fig. 5.1. The chi-square distribution tor different degrees of freedom V .  

For v 5 2 the chi-square distribution i a  monmonically decreasing 

I with increasing u; indeed v-1 implie. m infinite ordinate at "10. Por w > 2 
the distribution has a m a x i m  value (mode) at w-2. It is seen that the chi- 
square distributions correspond to a special class of the more general g- 
distribution (Seet.4.7.1). 

The characteristic function for the chi-square distribution is found 
from the definition eq.(3.22). 

I - 
m(tl - e(eitu) - 1 eitur(u;v)du. 

0 
Inserting the p.d.f. of eq.O.5) and carrying out the integration lads co 

The c2 distribution:
Suppose we sum n random variables distributed 
with mean µ and variance s2:

This variable will be distributed as:

This distribution is referred to as ”the c2 
distribution for n degrees of freedom”

• If µ is unknown, which is often the case, one 
constructs the variable

which is distributed according to a c2 distribution 
with (n-1) degrees of freedom.

• For n large, c2 distribution ® Gaussian 
distribution with mean n and V = 2n 

   [or s = √(2n)]
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Other important distributions

χ
2
≡

n
∑

i=1

(

x
i
− µ

σ

)2

Fig .  5.2. p r ~ b a h i l i r y  tllc chi-square d i s t r i bu t ion .  

5.1.4 Probabi l i ty  content8 of the chi-square d i s t r i b u t i o n  
I n  p r ac t i ce  one is f requent ly  i n t e r e s t ed  i n  the cumulative chi-square 

d i s t r i bu t ion  t o  ca lcula te  confidence i n t e rva l s  or  fo r  t e s t i ng  hlrpotblses invol- 
ving chi-square d i s t r i bu t ed  var iables .  

Figure 5.2 gives probabi l i ty  contents of the  chi-square p.d.f. f o r  
d i f f e r en t  numbers of degrees of freedom. The f i gu re  shovs a double-logarithmic 
display of the quan t i t i e s  F(G;v)  and a versus 4. as implied by the  r e l a t i o n  

. . 2  

F(X';V) z f ( ~ ; v ) d u  - I - LY . a r' (5.13) 

Appendix Table A8 gives values of x2 f o r  d i f f e r en t  w and speci f ied  e n t r i e s  of a 
F(X;;Y). 

When the  n d e r  of degrees of freedom i s  s u f f i c i e n t l y  la rge ,  v ? 30. 
the  p robab i l i t y  coorents of the chi-square d i s t r i bu t ion  can e a s i l y  be found 

using the  f a c t  t h a t  the  var iable  yz of eq.(5.12) ( o r  y,  of eq.(5.11)) is 
approximately standard normal. See Exercise 5.8. 

It may be worth noting. t ha t  the  p.d.f .  for  the var iable  F(x~;*)  of 
eq. (5.13) is uniform over the  i n t e rva l  fO.1 I .  (This f a c t  is g e o e r d l y  t r u e  f o r  
any va r i ab l e  defined by the  c m u l s t i v c  i n t eg ra l  of a p.d.f . .  see ~ ~ c t . 6 . 5 . 1 . )  
We s h a l l  see an e x m l e  of the  usefulness of t h i s  property i n  Seet.10.6.4. 

5.1.5 Addition theorem f o r  chi-square d i s t r i bu t ed  var iables  
It has  previously been s h m  t h a t  e l i n e a r  conbination of independent, 

normal var iables  is i t s e l f  a normally d i s t r i bu t ed  var iable  ( the  addi t ion  t h e w  
=em f o r  normally d i s t r i bu t ed  var iables ,  Sect.4.8.5). A s imi l a r  theorem holds 

f o r  a l i oea r  combination of independeat chi-square var iables ,  and may be s t a t e d  
as follows: 

Let u, .ur ,  .... ur be a s e t  of independent var iables  having chi-square 
d i s t r i bu t ions  wrth vl,u,. ..., ur degrees of freedmn, respect ive ly .  
Then t h e  sum v-ul+u*+...+ur is a l so  a chi-square d i s t r i bu t ed  va r i ab l e ,  
w i th  v..vl+vz+ ...+ u, degree8 of freedom. 

This theorem i s  proved r i@ly  by not ing  t ha t  the cha rac t e r i s t i a  func- 
t i on  f o r  the  var iable  v ge ts  the airme form ae the  cha rac t e r i s t i c  funct ion  f o r  an 
individual u*. Because of the ass-d independence, eq.(3.51) appl ies ,  and 
gives 

The cumulative c2 distribution:

Suppose you have a set of observables xi and 
want to see if they are consistent with a mean µ 
and variance s2. You calculate c2 as

and see if the value is consistent with that 
expected from the c2 distribution. I.e., if the value 
is very high or very low, the guessed µ and s are 
probably wrong. To make a quantitative 
statement of how likely the obtained c2 value is, 
one needs to know the probability content of the 
c2 distribution, i.e., the fractional area under parts 
of it. This is called the cumulative c2 distribution. 
It is often presented as a plot, but there are 
standard routines and online calculators for 
calculating it.

• From right-most plot, c2 =7 for n=2 has a = 
0.03 ⇒ 3% of ensemble is above this (⇒rare). 
For n =7, a = 0.40 ⇒ 40% of ensemble is 
above this (⇒not rare) 
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Fitting data

We often fit data to a PDF hypothesis, to determine signal 
and background yields. Three variations of this:

• all parameters of PDF are fixed (e.g., from MC), and 
the resulting c2 (”goodness-of-fit”) tells us if the 
assumed PDF is likely or unlikely, i.e., describes the 
data well.

• parameters of PDF are fixed to MC but adjusted 
(“calibrated”) to reduce data/MC differences for a 
control sample; c2 tells us if this adjusted PDF 
describes the data

• analytic form (shape) of PDF is taken from MC, but 
parameters are floated in the fit. Fitter determines 
“best” values of the parameters, c2 tells us if this fitted 
PDF describes the data well. How is this fit performed?

4 S. Esen and A. J. Schwartz
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Fig. 1. Mbc and ∆E projections of the fit result. The top row shows B0
s → D+

s D−
s ; the middle

row shows B0
s →D∗±

s D∓
s ; and the bottom row shows B0

s → D∗+
s D∗−

s . The red dashed curves
show CR+WC signal; the blue and purple solid curves show CF; the grey solid curves show
background; and the black solid curves show the total.

the unknown CP -odd component in B0
s →D∗+

s D∗−
s , and contributions from three-

body final states. With more data these unknowns can be measured. The former
is estimated to be only 6% for analogous B0 → D∗+D∗−

s decays,15) but the latter
can be significant: Ref.16) calculates ∆Γ (Bs → D(∗)

s D(∗)K(∗))/Γs = 0.064 ± 0.047.
This calculation predicts ∆Γs/Γs from D(∗)+

s D(∗)−
s alone to be 0.102 ± 0.030, which

agrees well with our result. If the CP -violating phase φs is nonzero, ∆Γs/Γs =
1/ cos φs −

√
(1/ cos φs)2 − 4B(1 − B)/(1 − B), where B includes all CP -even decay

modes. Figure 2 plots ∆Γs as a function of φs for our measured B value.

signal PDF
background PDF

Two common methods:

• Method of maximum likelihood 

• Method of least squares (“c2 fit”)

binned ML fit
unbinned ML fit
extended unbinned ML fit
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Method of maximum likelihood I

Suppose we have a set of n measurements x1, x2, x3...xn and a set of parameters qj 
we want to determine. We construct a likelihood function L as:

where P(xi |q) is the probability of measuring xi given parameters q . Thus, L is the 
joint conditional probability of measuring x1, x2, x3...xn for  a fixed set of qj . The 
most likely values of qj are those that maximize L . Computationally, as L can be 
quite small, we usually maximize the logarithm of L:

L(!x; !θ) =
n∏

i=1

P(xi|!θ)

lnL(!x; !θ) =
n∑

i=1

lnP(xi|!θ)

⇒
∂ lnL

∂θj

=
n∑

i=1

∂ lnP

∂θj

= 0

for
∂2 lnL

∂θ2

j

=
n∑

i=1

∂2 lnP

∂θ2

j

< 0

(sum, instead of product)
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Method of maximum likelihood II

Example: fit for lifetime t

so most-likely value is mean value

∂2 lnL

∂τ 2

∣

∣

∣

∣

∣

τ=⟨t⟩

=
∂

∂τ

(

−
n

τ
+

1

τ 2

n
∑

i=1

t
i

)
∣

∣

∣

∣

∣

τ=⟨t⟩

=

(

n

τ 2
−

2

τ 3

n
∑

i=1

t
i

)
∣

∣

∣

∣

∣

τ=⟨t⟩

=
n

〈t〉2
−

2

〈t〉3

n
∑

i=1

t
i

=
n

〈t〉2
−

2n

〈t〉2
= −

n

〈t〉2

∂ lnL

∂τ
=

∂

∂τ

n
∑

i=1

ln

(

1

τ
e
−t

i
/τ

)

=
n
∑

i=1

∂

∂τ
ln

(

1

τ
e
−t

i
/τ

)

=
n
∑

i=1

τ e
t
i
/τ

[

−
e−t

i
/τ

τ 2
+

e−ti/τ

τ

(

ti

τ 2

)]

=
n
∑

i=1

[

−
1

τ
+

ti

τ 2

]

= −
n

τ
+

1

τ 2

n
∑

i=1

ti = 0

⇒ n =
1

τ

n
∑

i=1

ti

⇒ τ =
1

n

n
∑

i=1

ti = 〈t〉

= negative, as desired for a maximum
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Method of maximum likelihood III
What is the uncertainty on the best fit value(s) q ?

The uncertainty (68.3% confidence interval) is taken to be the square root of the variance, √V. 
How to calculate the variance?

For one fitted parameter, it can be shown that

For a multi-parameter fit, it can be shown that

In practice, e.g., MINUIT, the derivatives ∂L/∂q, ∂2L/∂q2, ∂2L/(∂qi ∂qj at q =q are evaluated 
numerically. MINOS calculates them to much higher precision than MIGRAD.

^

V (θ̂) =
1

(

−

∂2 lnL

∂θ2

)

θ=θ̂

(

V
−1

)

ij
(θ̂) = −

∂2 lnL

∂θi ∂θj

∣

∣

∣

∣

∣

∣

θ=θ̂

^

For a large number of observables xi , the 
likelihood function L ® Gaussian, or ln L ® 
parabolic. The likelihood content of L, used to 
obtain confidence intervals for the fitted 
parameters, can then be calculated analytically. 
The results are as shown:

F i e .  9 .5 .  Likel ihood i n t e r v a l s  f o r  a one-parameter 1nL func t ion ,  
ob ta ined  from i n t e r s e c t i o n  wi th  s t r a i g h t  l i n e s  1nL = lnL(man)-2; 
(a) a symmetric, pa rabo l ic  lnl. f u n c t i o n ,  (b) an u n s y m e t r i c  1nL 
f u n c t i o n .  

and i n  accordance w i t h  t h e  i n v a r i a n c e  p r o p e r t y  of HL e s t i m a t e s  (Sect.9.4.1) 

t h e  HL s o l u t i o n  f o r  g  i s  k = g(8) .  

~ r o m  L ( ~ l g )  one can f i n d  l i k e l i h o o d  i n t e r v a l s  f o r  g i n  e x a c t l y  t h e  
8 - 

same way as in t h e  case of B normal-shaped LF. I f  t h e  l i k e l i h o o d  i n t e r v a l  f o r  
- 
g  i s  [ga,gbI, t h e  corresponding l i k e l i h o o d  i n t e r v a l  (8  a' e b  1 f o r  t h e  o r i g i n a l  

parameter  !3 can be  found by t & i n g  t h e  va lves  Oa,  e b  as implied by t h e  t r a n s -  

fo rmat ion  g  - g(Ba), gb = g(Bb). Thus we should have t o  make an i n v e r s e  t r a n s -  

formation t o  o b t a i n  8  and 8  e x p l i c i t l y .  b  
me e l a b o r a t e  p r o c e s s  of performing a t r a n s f o r m t i o n  and a subsequent  

i n v e r s e  t r ans format ion  is i n  f a c t  unnecessary.  S i n c e  t h e  l i k e l i h o o d  i t s e l f  

g ives  t h e  j o i n t  p r o b a b i l i t y  f o r  o b t a i n i n g  t h e  observa t ions  xl,x,, . . . ,x and 

t h i s  p r o b a b i l i t y  must be  rhe  same whether t h e  parameter  i s  expressed d i r e c t l y  

as 0 or i n  an implied form g(B),  we must have, f o r  a l l  8 ,  

L8c.le) = ~ ~ ( ~ 1 ~ ) .  

It fol lows t h a t  s i n c e ,  f o r  example, a 95.4% l i k e l i h o o d  i n t e r v a l  f o r  g is found 

from the  i n t e r s e c t i o n s  of L  ( n ( g )  wi th  t h e  l i n e  L  = L  (max)e"', t h e  corre- 
g  - g  g  

sponding 95.4% l i k e l i h o o d  i n t e r v a l  f o r  0  can simply be  ob ta ined  by f i n d i n g  t h e  - 210 
i n t e r s e c t i o n s  o f  L  (~1 .3 )  wi th  Lo = L  (max) e . S i m i l a r l y ,  i n t e r s e c t i n g  the  8  - e 
"on-normal LF by any s t r a i g h t  l i n e  a t  a m u l t i p l e  e-= from maximum w i l l  d i r e c t l y  

produce l i k e l i h o o d  i n t e r v a l s  o f  as given f o r  the  case  with  an 

i d e a l ,  normal LF. 

S t r i r t l y  speakinp,  t h e  l;?sf a s s e r t i o n  can only be  approximately 
correct. This  i s  so because t h e  assumptions underlying t h e  argumentat ion above 
w i l l  no t  be s a t i s f i e d  i n  the  genera l  case. The e x i s t e n c e  of t h e  t r ans forming  
f u n c t i o n  g ( 0 )  i s  not  g ran ted  and w i l l ,  i n  f a c t ,  only h e  f u l f i l l e d  t o  some 

approximation, depending on t h e  f u n c t i o n a l  form of the  p .d . f .  and t h e  sample 

va lues ,  which determine t h e  a c t u a l  shape of t h e  LF. For p r a c t i c a l  work t h i s  
need not  d i s t u r b  us; as long as t h e  graph o f  t h e  1nL f u n c t i o n  has a s i n g l e  

maximum i n  the  reg ion  of i n t e r e s t  and does n o t  d e v i a t e  too  much from a parabo la  

we may f i n d  i t s  i n t e r s e c t i o n s  with t h e  s t r a i g h t  l i n e s  to o b t a i n  l i k e l i h o o d  

i n t e r v a l s  of approximate p r o b a b i l i t y  c o n t e n t s  as given by eq.(9.62);  see 

Fig.  9 . 5 ( b ) .  

Because of  i t s  s i m p l i c i t y ,  the  i n t e r s e c t i o n  procedure i s  t h e  one 
most f r e q u e n t l y  used tar i n t e r v a l  e s t i m a t i o n  by p h y s i c i s t s .  An a l t e r n a t i v e  

procedure,  e q u a l l y  j u s t i f i e d  from t h e  i n t u i t i v e  po in t  of view t h a t  t h e  l i k e -  
l ihood func t ion  g i v e s  a measure of our  b e l i e f  i n  t h e  p o s s i b l e  va lues  o f  t h e  

unknown parameter ,  c o n s i s t s  i n  e x p l i c i t l y  i n t e g r a t i n g  t h e  LF. Far  example, i f  

we should choose t o  have equa l  i n  the  two t a i l s  of t h e  LF, w e  

could d i v i d e  t h e  t o t a l  range f o r  0, R L  : I3 B,, i n t o  a number of c e l l s  ABi  and 
determine numerical ly two va lues  B and Bb such t h a t  

and 

9 - Prob@btllfy and ifaflltlc. 

A- 

symmetric asymmetric

(in practice, -lnL is used, and confidence intervals 
are obtained from rise above the minimum)
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Method of least squares (c2 fit)

Suppose 

Suppose we have a set of n measurements x1, x2, x3 ...xn with uncertainties s1, s2, s3 ...sn ,and a 
theoretical model predicts values f1, f2, f3...fn for these observables. The model depends on a set 
of parameters qj that we want to determine. For example: if xi were the bin contents of a helicity 
distribution, q1 would be the branching fraction of the decay mode, and q2 would be the fraction 
of longitudinal polarization. 

The most-likely values of qj would be those that minimize the c2 statistic

If the yi are correlated, then the most-likely values of qj minimize

where V is the covariance matrix for the xi measurements. 

χ2 =
n∑

i=1

(x
i
− f

i
)2

σ2

i

χ2 =
n
∑

i=1

n
∑

j=1

(xi − fi)
(

V −1
)

ij
(xj − fj)

Note that if the measured values xi are 
normally distributed about mean values 
µi with standard deviations si , then the 
least-squares method and maximum-
likelihood method are identical:

L =
n∏

i=1

1
√
2π σi

e−(x
i
−f

i
)2/(2σ2

i
)

=
1

√
2π(σ1σ2σ3 . . .σn)

e−

∑
n

i=1
(x

i
−f

i
)2/(2σ2

i
)

⇒ lnL = −
n∑

i=1

(xi − fi)
2

2σ2
i

+ C

= −
χ2

2
+ C

Since c2 is positive-
definite, max(ln L) 
corresponds to min(c2)
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