Machine Learning in Belle II Analyses (w/ Hands-on)

T. Lam and B. Zhang

Mānoa

Outline

- Introduction of Machine Learning
 - Why do we do machine learning?
 - Examples of Usage
- How to do Machine Learning?
- Model of Interest: Decision Trees
- Hands-on exercise
 - Clustering Review
 - Kaggle time

What is Machine Learning?

 "Machine learning is a form of Al that enables a system to learn from data rather than through explicit programming."

PC:https://levity.ai/blog/difference-machine-learning-deep-learning

Types of Machine Learning Problems (w/ ex.)

For better view of the landscape: https://iml-wg.github.io/HEPML-LivingReview/

Supervised Learning

- Given a dataset with a set of labels/indices, train your machine to get those labels right.
 If labels are discrete, then we have classification
 - If labels are continuous, then we have regression
- If not all your dataset is labeled or you don't have labels, then you are semi-supervised or unsupervised

PC:<u>https://www.kdnuggets.com/wp-content/uploads/mehreen_unde</u> rstanding_supervised_learning_theory_overview_6.png

PC:<u>https://www.simplilearn.com/ice9/free_resources_article_thumb/</u> Regression_vs_Classification.jpg

Examples of Recent Analyses w/ Classifiers

<u>Observation of the decay B0 $\rightarrow J/\psi \omega$:</u> XGBoost for event selection [slides]

<u>Search for lepton flavor-violating decay modes B0 \rightarrow K*T±l + (l=e, μ): fastBDT for qq and BB suppression</u>

<u>Measurement of the CP asymmetry in D+ $\rightarrow \pi$ + π 0 decays: ROOT TMVA's implementation of MLP</u>

<u>Search for inclusive B \rightarrow Xsvv decays using hadronic B tagging:</u> fastBDT for event selection

<u>Measurement of the time-integrated CP asymmetry in D0 $\rightarrow \pi 0\pi 0$ decays</u>: Histogram Based BDT for $\pi 0$ selection

<u>Measurement of the time-integrated CP asymmetry in D0 \rightarrow KS KS decays: ROOT TMVA's BDT</u>

How to do machine learning?

With a focus on supervised learning

Another summary from Student Research Showcase: [link] - slide 5

Data Collection

For Belle II, data taking is the most important task!

In general, the more data, the better.

Take shifts to help in with this part!

(shift2.belle2.org)

Data Processing

Basf2 software converts raw data to analysis-level variables as part of processing.

These variables are used as "**features**" or inputs into our machine learning model.

Data Processing

In general, data processing should also consider the following:

- Feature selection:
 - Choose variables with high discriminating power
 - Remove irrelevant variables
 - Little discriminating power
 - Highly correlated with other features
- Data Cleaning:
 - Missing Values/Bad Formatting/Type Conversion
 - Duplicates in dataset
 - Outlier detection (bad reconstructed signal?)
 - Verifying/cross-checking labels

Model Selection

After preparing your datasets, choose the model/algorithm that is best suited for your task.

Things to consider:

- Availability of resources (time)
- Strengths and weaknesses?
- Evaluation Metrics

For details on models, see last year's summer workshop [link]

Decision Trees

Training, Validation, & Testing

- For a given dataset with a set of features, one typically partitions their dataset into:
 - **Training**: The bulk of your overall dataset should be here to make sure your model learns as many trends as possible.
 - <u>Validation</u>: An independent subset used to check for overfitting during training (and <u>hyper-parameter tuning</u>)
 - **<u>Testing</u>**: Another independent subset used for overall comparisons.
- A figure of merit or evaluation metric is important and is dependent on your model and problem.

Performance Evaluation Example

Receiver Operating Characteristic (**ROC**) curves are used to evaluate classification models.

Quick Break For Questions

Understanding model Decision Trees

What is a decision tree?

- A decision tree is a flowchart-like model
- Each node partition the dataset based on one feature.
- Each leaf represents the outcome of the partition.

Credit: Gradient Boost Intro

How decisions are made?

- The decision is made by minimizing the Gini Impurity or entropy of the subset
 - Gini = $\sum_{i}(p_i)(1-p_i) = 1 \sum_{i}(p_i)^2$
 - Entropy = $-\sum_{i}(p_{i})\log(p_{i})$
 - Others...
- All possible splits are considered and optimal cut is selected

Limitations of Decision Trees

• Bias towards dominate class (assuming there's a class imbalance)

https://www.geeksforgeeks.org/limitations-of-decision-tree/,

https://carpentries-incubator.github.io/machine-learning-trees-python/03-variance/index.html

Decision Tree Ensembles

- Use an ensemble of models and classify an event by the majority rule
 - Concept of 'bagging' or 'bootstrapping'
- Less susceptible to fluctuations and helpful for determining how important variables are
- A bit computationally expensive and less interpretable...

https://www.ibm.com/think/topics/random-forest

For n epochs, train a DT and use information from said tree to inform structures of subsequent trees

- Low bias, very easy implementation
- Can still prone to overfitting, so proceed with caution (i.e. hyperparameter tune)
- Still an intense computation (but not as much as random forest)

Boosted Decision Trees (example)

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

 $\mathrm{obj}^{(t)} = \sum^{n} l(y_i, \hat{y}_i^{(t)}) + \sum^{n} \omega(f_k)$

Instance index

gradient statistics

a2, h2

https://xqboost.readthedocs.io/en/stable/tutorials/model.html

 $I_3 = \{2, 3, 5\}$

 $G_3 = g_2 + g_3 + g_5$

- - XGBoost: https://xgboost.readthedocs.io/en/stable/
 - Expert(s): Noah Brenny, maybe me...
 - FastBDT: https://software.belle2.org/development/sphinx/mva/doc/index-01-mva.html#fastbdt
 - Expert(s): Logan Benninghoff, Alex Gale
 - LightGBM: https://lightgbm.readthedocs.io/en/latest/Features.html
 - Expert(s): Boyang Zhang
 - Scikit-Learn: <u>https://scikit-learn.org/stable/modules/ensemble.html</u>
 - Expert(s): Santi Naylor
 - ROOT's TMVA: <u>https://root.cern/manual/tmva/</u>

How to use XGBoost: Hyper-parameters

- Boosting Parameters
 - Learning rate (α), minimization loss for new leaf (γ), max tree depth, minimum child weight (i.e. when to give up on partitioning), subsampling rate, subsampling method, regularization weights, …
- Learning Task Parameters
 - Objective function, evaluation metrics (for validation)
- How to choose... (hint: <u>slide 13</u>)

How to use XGBoost: Example Script

```
from xgboost import XGBClassifier
```

import uproot
import pandas as pd
from sklearn.model_selection import train_test_split

```
# read data
```

data['target'], test_size=.2)

```
# fit model
bst.fit(X_train, y_train)
```

```
# make predictions
preds = bst.predict(X_test)
```

https://xgboost.readthedocs.io/ en/latest/parameter.html

Also see: https://www.kaggle.com/code/z jkjsd/xgboost-example

How to use scikit-learn: Example Script

from sklearn.ensemble import GradientBoostingClassifier
import uproot
import pandas as pd
from sklearn.model_selection import train_test_split

clf = GradientBoostingClassifier(**random_parameters)

fit model
clf.fit(X_train, y_train)

make predictions
preds = clf.predict(X_test)

https://scikit-learn.org/stable/mod ules/generated/sklearn.ensemble .GradientBoostingClassifier.html

Also see: https://www.kaggle.com/code/zjkj sd/scikit-learn-example

How to use LightGBM: Example Script

```
param = {
```

"objective": "binary",
"metric": "binary_logloss",
"verbosity": -1,
"boosting_type": "gbdt",
"lambda_l1": trial.suggest_

```
import optuna # for hyperparameter tuning
import lightgbm as lgm
#import optuna.integration.lightgbm as lgb # using optuna intergraiont with lightgbm
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```

```
"lambda_l1": trial.suggest_float("lambda_l1", 1e-8, 10.0, log=True),
"lambda_l2": trial.suggest_float("lambda_l2", 1e-8, 10.0, log=True),
"num_leaves": trial.suggest_int("num_leaves", 2, 22),
"feature_fraction": trial.suggest_float("feature_fraction", 0.4, 1.0),
"bagging_fraction": trial.suggest_float("bagging_fraction", 0.4, 1.0),
"bagging_freq": trial.suggest_int("bagging_freq", 1, 7),
"min_child_samples": trial.suggest_int("min_child_samples", 5, 10).
```

```
gbm = lgm.train(param, dtrain)
preds = gbm.predict(X_val)
pred_labels = np.rint(preds)
```

https://lightgbm.readthedocs.io/e n/stable/

Also see:

https://www.kaggle.com/code/zjkj sd/lightgbm-example

How to use FastBDT: Example Script

from PyFastBDT import FastBDT
import uproot
import pandas as pd
from sklearn.model_selection import train_test_split

create model instance
random_parameters = {"nTrees":1, "depth":1, "shrinkage":0.1, "subsample":1.0,}

Train FastBDT using its PythonInterface, # which is based on the SKLearn classifiers clf = FastBDT.Classifier(**random_parameters)

fit model
clf.fit(X=X_train, y=y_train)

make predictions
preds = clf.predict(X_test)

https://github.com/thomask eck/FastBDT/tree/master

(No example made on Kaggle yet...)

Quick Break For Questions

Photon Detection Recap

For details: <u>https://indico.belle2.org/event/8841/contributions/61147/attachments/23523/34739/Calorimetry.pdf</u> Or <u>https://indico.belle2.org/event/14599/contributions/93876/attachments/35194/52138/B2SS2025_Detector.pdf</u> (slides 19 & 20)

QUIZ:

- How do we detect photons?

How do we measure photons?

- Electromagnetic Calorimeter
 (Image: Calorimeter (Image: Calorimeter)
- No tracks (i.e. isolated cluster)

QUIZ:

- How do we detect photons?
- Are there any FSPs that could fake a photon signal?

FSP = final state particles

What could fake photons?

- n, K-Longs, but not part of this discussion (how do we deal with them...)
- Multiple low-energy clusters from beam background processes
- Showers from tracks?

QUIZ:

- How do we detect photons?
- Are there any FSPs that could fake a photon signal?
- Are there any properties of ECL that could help us distinguish between photons and other FSPs?

FSP = final state particles

Cluster properties

- Measure the energy deposition and the width of the shower, e.g. E/p
- Electrons will create EM showers and deposit all their energy in the ECL
- Hadrons will likely pass through and not lose much energy (so its shape would be different than EM showers)

Potential variables to work with

- clusterE
- clusterEoP
- minC2TDist
- clusterE1E9
- clusterE9E25 (or E9E21)
- clusterAbsZernikeMoment40

- clusterTheta, clusterPhi
- clusterTiming,
- clusterErrorTiming
- clusterNHits
- clusterReg
- MVA outputs?

Full list: <u>https://software.belle2.org/development/sphinx/analysis/doc/Variables.html#ecl-cluster</u>

Beam Background Suppression

Much thanks to P. Cheema for her assistance with this hands-on!

Hands-on exercise: kaggle <u>https://www.kaggle.com/competitions/2025-b2</u> <u>sw-ml</u>

Example notebooks: https://www.kaggle.com/competitions/2025-b2sw-ml/code

Backup

For certain models, one way to tackle overfitting and exploding gradients is by introducing a regularizing term in the loss function.

Sometimes, λ is normalized by the number of nodes/weights you have (but is up to the developer/user) since it is a constant throughout training anyways

New node split and new tree?

$$Obj = -\sum_j \frac{G_j^2}{H_j + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

Algorithm 1: Gradient_Boost1
$$F_0(\mathbf{x}) = \arg \min_{\rho} \sum_{i=1}^{N} L(y_i, \rho)$$
2For $m = 1$ to M do:3 $\tilde{y}_i = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}, i = 1, N$ 4 $\mathbf{a}_m = \arg \min_{\mathbf{a}, \beta} \sum_{i=1}^{N} [\tilde{y}_i - \beta h(\mathbf{x}_i; \mathbf{a})]^2$ 5 $\rho_m = \arg \min_{\rho} \sum_{i=1}^{N} L(y_i, F_{m-1}(\mathbf{x}_i) + \rho h(\mathbf{x}_i; \mathbf{a}_m))$ 6 $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_m h(\mathbf{x}; \mathbf{a}_m)$ 7endFor
end Algorithm

Algorithm 2: LS_Boost

$$F_0(\mathbf{x}) = \bar{y}$$

For $m = 1$ to M do:
 $\tilde{y}_i = y_i - F_{m-1}(\mathbf{x}_i), \quad i = 1, N$
 $(\rho_m, \mathbf{a}_m) = \arg\min_{\mathbf{a}, \rho} \sum_{i=1}^N [\tilde{y}_i - \rho h(\mathbf{x}_i; \mathbf{a})]^2$
 $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_m h(\mathbf{x}; \mathbf{a}_m)$
endFor
end Algorithm

https://jerryfriedman.su.domains/ftp/trebst.pdf

Resources (in general)

In the last 5 years, there is a major abundance of resources to learn ML. Let put a subset of resources that I used to inspire this talk:

S. Still. "Machine Learning: For scientists" (2019).

I. Haide and L. Reuter "Machine Learning: Current Projects at Belle 2" (2023).

S. Dubey. "Machine Learning Hands-On" (2023).

S. Vallecorsa. "Artificial Intelligence and Machine Learning" CHEP 2023.

J. Hurwitz and D. Kirsch "Machine Learning for dummies: IBM Limited Edition."

P. Wittek. "Quantum Machine Learning: What Quantum Computing Means to Data Mining" (2014).

Resources (Decision Trees)

- "Boosted Decision Trees." <u>https://arxiv.org/pdf/2206.09645</u>
- "What is a decision tree?." https://www.ibm.com/topics/decision-trees
- "Decision Tree." https://en.wikipedia.org/wiki/Decision tree
- "FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted decision trees for multivariate classification." <u>https://arxiv.org/abs/1609.06119</u>
- "XGBoost: A Scalable Tree Boosting System."
 <u>https://arxiv.org/abs/1603.02754</u>