Measuring $B(B^- \rightarrow D^{**0}\pi^-)$ using FEI Hadronic Tagging

Alex Gale Belle 2 Summer Workshop at Virginia Tech June 26, 2025 University of Cincinnati

Decay Process

Decay Mode		Branching Fraction
Γ_{54}	$D^0\pi^-$	$(4.61 \pm 0.10) \times 10^{-3}$
Γ ₁₃₁	$D^{*0}\pi^-$	$(5.17 \pm 0.15) \times 10^{-3}$
Γ_{151}	Combined $D^{**0}\pi^-$	$(5.6 \pm 1.2) \times 10^{-3}$
		<u>Particle Data Group</u>

We want to measure four $D^{**0}\pi^$ branching fractions individually!

Motivation

Exclusive $|V_{cb}| = (39.10 \pm 0.50) \times 10^{-3}$ PRD 107, 052008 (2023) Inclusive $|V_{cb}| = (41.97 \pm 0.48) \times 10^{-3}$ <u>[HEP 02 (2024) 206</u>]

- $|V_{cb}|$ is determined through semileptonic decays
- Tension between inclusive and exclusive $|V_{cb}|$ –

Motivation

Exclusive $|V_{cb}| = (39.10 \pm 0.50) \times 10^{-3}$ PRD 107, 052008 (2023) Inclusive $|V_{cb}| = (41.97 \pm 0.48) \times 10^{-3}$ <u>[HEP 02 (2024) 206</u>]

- $|V_{cb}|$ is determined through semileptonic decays
- Tension between inclusive and exclusive $|V_{cb}|$ –
- Possibly from poor modeling of higher excited charm states
 - $B \rightarrow D^{**}l \ nu$ not well known

Motivation

Exclusive $|V_{cb}| = (39.10 \pm 0.50) \times 10^{-3}$ PRD 107, 052008 (2023) Inclusive $|V_{cb}| = (41.97 \pm 0.48) \times 10^{-3}$ <u>IHEP 02 (2024) 206</u>

- $|V_{cb}|$ is determined through semileptonic decays
- Tension between inclusive and exclusive $|V_{cb}|$ –
- Possibly from poor modeling of higher excited charm states
 - $B \rightarrow D^{**}l \ nu$ not well known
- $B \rightarrow D^{**}\pi$ can help understand $B \rightarrow D^{**}l nu$ at corresponding kinematic point

Analysis Strategy

- Use Full Event Interpretation (FEI) to hadronically tag charged B mesons
- Train Continuum Suppression and optimize with FEI
- Fit a distribution such as Mbc to extract tag B number
- Use tag B and pion from signal B decay to calculate missing mass
- Fit missing mass distribution for each D^{**} peak
 - Extract currently unknown absolute branching fractions

B Meson Tagging

- Full Event Interpretation (FEI)
 - Hadronic tagging
 - Kinematic constraint on signal B

B Meson Tagging

- Full Event Interpretation (FEI)
 - Hadronic tagging
 - Kinematic constraint on signal B
- Rank each candidate by the FEI MVA Output

tag B selection $5.27 < Mbc < 5.29 \ GeV/c^2$ $-0.1 < \Delta E < 0.05 \ GeV$ FEI MVA output > 0.001 FEI MVA Rank = 1

B Meson Tagging

- Full Event Interpretation (FEI)
 - Hadronic tagging
 - Kinematic constraint on signal B
- Rank each candidate by the FEI MVA Output

tag B selection $5.27 < Mbc < 5.29 \ GeV/c^2$ $-0.1 < \Delta E < 0.05 \ GeV$ FEI MVA output > 0.001 FEI MVA Rank = 1

$$M_{bc} = \sqrt{E_{beam}^2 - \left|\overline{p_{tag}}\right|^2}$$

True B^+B^- tags Fake B^+B^- tags Fake $B^0\overline{B^0}$ tags $c\overline{c}$ background uds background

Missing Mass

With best candidate tag B

- Particles not combined to make tag $B \rightarrow$ from signal B
- Look for $D^{**0}\pi^-$ in signal B decay

Find π on signal side Measure E_{π} and $\overline{p_{\pi}}$ Cuts: pionID > 0.6, $p_{\pi^-} > 1.5 GeV/c$, dr < 0.5 *cm*, |dz| < 2 *cm*, 17° < θ < 150°

Missing Mass

• With best candidate tag B

- Particles not combined to make tag $B \rightarrow$ from signal B
- Look for $D^{**0}\pi^-$ in signal B decay

Continuum Suppression (CS) with FastBDT

• 50fb⁻¹ for training and 50fb⁻¹ for validation

Variables

$$R_{l} = \frac{H_{l}}{H_{0}} \qquad H_{l} = \sum_{i,j} \frac{|\overrightarrow{p_{i}}| |\overrightarrow{p_{j}}|}{s} P_{l}(\cos\theta_{ij})$$

- R2 is the second Fox Wolfram moment –
- 16 Kakuno Super Fox Wolfram (KSFW) moments
- KSFW(mm2) is the missing mass squared (missing from tag B and Rest of Event)
- KSFW(et) is transverse energy
- Cleo Cones, a set of 9 cones summing particle energy in 10° sections
 - Runs from 0° (aligned with the B_{tag}) and 90° (transverse to the B_{tag})
 - Sums the forward and backward direction
- cosTBz angle between B_{tag} thrust and the z-axis
- cosTBTO angle between the B_{tag} thrust and ROE thrust
- thrustBm B_{tag} thrust magnitude
- thrustOm ROE thrust magnitude

Significance Optimization

- Estimated significance of $D^{**0}\pi^-$ signal vs cuts in FEI MVA output and CS MVA output
- Significance = $\frac{N_{sig}}{\sqrt{N_{sig} + N_{bkg}}}$ in signal box: 5.27 < M_{bc} < 5.29 GeV/c² and 2.2 < Missing Mass < 2.8 GeV/c²
- 2D figure of merit optimizes significance to find best cuts in the FEI MVA output and CS MVA output

Significance Optimization

- Estimated significance of $D^{**0}\pi^-$ signal vs cuts in FEI MVA output and CS MVA output
- Significance = $\frac{N_{sig}}{\sqrt{N_{sig} + N_{bkg}}}$ in signal box: 5.27 < M_{bc} < 5.29 GeV/c² and 2.2 < Missing Mass < 2.8 GeV/c²
- 2D figure of merit optimizes significance to find best cuts in the FEI MVA output and CS MVA output

- isSignal misses good FEI tags using standard FEI training (well known issue)
- Special variables exist to help... but don't recover all good tags

- isSignal misses good FEI tags using standard FEI training (well known issue)
- Special variables exist to help... but don't recover all good tags
- Hard to tell how many good tags missed with M_{bc}
 - Argus function can take many shapes

- isSignal misses good FEI tags using standard FEI training (well known issue)
- Special variables exist to help... but don't recover all good tags
- Hard to tell how many good tags missed with M_{bc}
 - Argus function can take many shapes
- Can't use deltaE to extract good tag number
 - Input variable in last FEI training stage

- isSignal misses good FEI tags using standard FEI training (well known issue)
- Special variables exist to help... but don't recover all good tags
- Hard to tell how many good tags missed with M_{bc}
 - Argus function can take many shapes
- Can't use deltaE to extract good tag number
 - Input variable in last FEI training stage
- Would like to use invariant mass
 - deltaE is correlated with invariant mass so backgrounds peak

- isSignal misses good FEI tags using standard FEI training (well known issue)
- Special variables exist to help... but don't recover all good tags
- Hard to tell how many good tags missed with M_{bc}
 - Argus function can take many shapes
- Can't use deltaE to extract good tag number
 - Input variable in last FEI training stage
- Would like to use invariant mass
 - deltaE is correlated with invariant mass so backgrounds peak
- FEI group recently completed MC16 FEI training without deltaE!

BABAR Measurement

- Measured branching fraction to four D^{**0} states combined
- Full reconstruction tagging $B^- \rightarrow D^{(*)0}\pi^-, D^{(*)0}\rho^-, D^{(*)0}a_1^ D^{*0} \rightarrow D^0\pi^-$

$$D^0 \to K^- \pi^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^- \pi^+, K_s \pi^- \pi^+$$

Missing Mass and Significance

tag B selection $5.27 < Mbc < 5.29 \ GeV/c^2$ $-0.1 < \Delta E < 0.05 \ GeV$ FEI MVA output > 0.06 CS MVA output > 0.20 FEI MVA Rank = 1

 π^{-} selection $p_{\pi^{-}} > 1.5 GeV/c$, dr < 0.5 cm |dz| < 2 cm $17^{\circ} < \theta < 150^{\circ}$ pionID > 0.6

$$M_{missing} = \sqrt{(E_{beam} - E_{\pi^-})^2 - |-\overline{p_{cand}} - \overline{p_{\pi^-}}|^2}$$

Missing Mass and Significance

	Estimated Significance		
Mode	BABAR scaled to 100fb ⁻¹	100fb ⁻¹ Belle II MC	
$D^0\pi^-$	14.60	30.11	
$D^{*0}\pi^-$	16.19	29.05	
$D^{**0}\pi^{-}$	7.33	11.19	
	$N_{D^{**0}} \approx N_{D^{*0}}$	$\frac{N_{D^{**0}(BABAR)}}{N_{D^{*0}(BABAR)}}$	

- Belle II MC14 observed D^{**0} does not match BABAR data
- MC16 decay file and evt.pdl match better

$$M_{missing} = \sqrt{(E_{beam} - E_{\pi^-})^2 - |-\overline{p_{cand}} - \overline{p_{\pi^-}}|^2}$$

Missing Mass and Significance

	Estimated Significance		
Mode	BABAR scaled to 100fb ⁻¹	100fb ⁻¹ Belle II MC	
$D^0\pi^-$	14.60	30.11	
$D^{*0}\pi^-$	16.19	29.05	
$D^{**0}\pi^{-}$	7.33	11.19	
	$N_{D^{**0}} \approx N_{D^{*0}}$	$\frac{N_{D^{**0}(BABAR)}}{N_{D^{*0}(BABAR)}}$	

- Belle II MC14 observed D^{**0} does not match BABAR data
- MC16 decay file and evt.pdl match better
- Fitting $D^{**0}s$ is difficult
 - Need to get shape parameters before fitting missing mass

$$M_{missing} = \sqrt{(E_{beam} - E_{\pi^-})^2 - |-\overline{p_{cand}} - \overline{p_{\pi^-}}|^2}$$

- D^{**0} can decay to $D^{(*)+}\pi^-$
- D^+ or D^{*+} depends on the D^{**0}

- D^{**0} can decay to $D^{(*)+}\pi^-$
- D^+ or D^{*+} depends on the D^{**0}

High momentum pion $\pi_{high p}^{-}$ Cuts: pionID > 0.6 , $p_{\pi^{-}} > 1.5 GeV/c$, dr < 0.5 cm, |dz| < 2 cm, 17° < θ < 150°

Low momentum pion $\pi_{low p}^-$ Cuts: pionID > 0.6 , $p_{\pi^-} < 1.5 GeV/c$, dr < 0.5 *cm* , |dz| < 2 *cm*, 17° < θ < 150°

• D^{**0} can decay to $D^{(*)+}\pi^-$

In Y(4s) center of mass frame:

 $M^2 = E^2 - |\vec{p}|^2$

 $p_{sig} = -p_{tag}$

 $E_{sig} = E_{beam}$

• D^+ or D^{*+} depends on the D^{**0}

B_{sig}

High momentum pion $π_{high p}^-$ Cuts: pionID > 0.6 , $p_{\pi^-} > 1.5 GeV/c$, dr < 0.5 *cm*, |dz| < 2 *cm*, 17° < θ < 150°

Low momentum pion $\pi_{low p}^-$ Cuts: pionID > 0.6 , $p_{\pi^-} < 1.5 GeV/c$, dr < 0.5 cm , |dz| < 2 cm, 17° < $\theta < 150^\circ$

$$\overrightarrow{p_X} = \overrightarrow{p_{sig}} - \overrightarrow{p_{\pi_{high p}}} - \overrightarrow{p_{\pi_{low p}}}$$
$$E_X = E_{sig} - E_{\pi_{high p}} - E_{\pi_{low p}}$$

$$M_{missing 2\pi} = \sqrt{\left(E_{beam} - E_{\pi_{high p}} - E_{\pi_{low p}}\right)^2 - \left|-\overline{p_{tag}} - \overline{p_{\pi_{high p}}} - \overline{p_{\pi_{low p}}}\right|^2}$$

 $\pi_{high p}$

 $\pi_{low p}$

 $100 f b^{-1}$ Belle II MC14 Data

 Use different D^{**0} decay modes to begin separating D^{**0}s

 $100 f b^{-1}$ Belle II MC14 Data

Summary

- Reconstruct hadronic tag B with FEI
- Optimize $D^{**0}\pi^-$ significance with CS and FEI MVA outputs in a 2D FOM
- Fitting missing mass D^{**0} peaks difficult
- Missing mass with $2^{nd} \pi^-$ helps separate D^{**0} s
 - Help determine fit shapes before fitting D^{**0} s for branching fractions
- Switching to MC16
 - Much better D^{**0} modeling
 - No deltaE in FEI training

Thank you!