Λ spin correlation at Belle II

Cynthia Nuñez Belle II Summer Workshop June 26, 2025

Research supported by:

Office of Science

Hadronization at Belle II

Hadronization at Belle II

- Hadronization: how particular hadrons are formed from scattered quarks and gluons (partons)
- Fragmentation Functions (FF): probability distribution of a parton fragmenting into a specific hadron

Important processes in studying hadron formation:

 $\sigma^{pp \to hX} = PDF \otimes PDF \otimes \hat{\sigma} \otimes FF$

Cynthia Nuñez

Hadronization at Belle II

• Hadronization: how particular hadrons are formed from scattered quarks and gluons (partons)

- Fragmentation Functions (FF): probability distribution of a parton fragmenting into a specific hadron
- Transverse momentum dependent (TMD): spinmomentum correlations

Important processes in studying hadron formation:

Image from arXiv:2304.03302v1

 $\sigma^{pp \to hX} = PDF \otimes PDF \otimes \hat{\sigma} \otimes FF$

Cynthia Nuñez

Duke University

Hadronization at Belle

Azimuthal asymmetries in inclusive production of hadron

Belle
measurements
sensitive to:

- Collins FF
- Di-hadron FF
- Polarizing FF

. . .

	Phys. Rev. Lett. 96, 232002 (2006)Phys. Rev. D 78, 032011 (2008) [Phys.Rev.D 86, 039905 (2012]
nts	Transverse polarization asymmetries of charged pion pairs
	<u>Phys. Rev. Lett. 107, 072004 (2011)</u>
	Inclusive cross sections for pairs of identified light charged hadrons and for single
-	Phys. Rev. D 92, 092007 (2015)
	Invariant-mass and fractional-energy dependence of inclusive production of di-hadrons
F	Phys. Rev. D 96, 032005 (2017)
	Production cross sections of hyperons and charmed baryons
	Phys. Rev. D 97, 072005 (2018)
	Transverse $\Lambda/\overline{\Lambda}$ Hyperon
1	Phys. Rev. Lett. 122, 042001 (2019)
	Transverse momentum dependent production cross sections of charged pions, kaons and protons
·	Phys. Rev. D 99, 112006 (2019)
	Inclusive cross sections of single and pairs of identified light charged hadrons
rement	<u>Phys. Rev. D 101, 092004 (2020)</u>
\mathbf{i}	Production cross section of light and charmed mesons
	Belle preprint 2024-09, KEK Preprint 2024-30, submitted to PRD

Recent measurement

Hadronization at Belle II and for the EIC

Duke University

- Belle II can offer high precision, comprehensive measurements essential for the Electron-Ion Collider (EIC)
 - Clean environment for detailed studies of hadronic final states
 - Multi-dimensional analyses of FFs, correlations, heavy flavor, and hadronization effects in jets
 - Essential for understanding transverse momentum of partons in measurements of PDFs and spin-structure of nucleon at the EIC

See Snowmass whitepaper <u>arXiv:2204.02280</u>

+ . . .

Λ polarization

- $\Lambda \rightarrow p\pi^-$ self analyzing decay
- The distribution of θ^* for polarized Λ :

$$\frac{1}{N}\frac{dN}{d\cos\theta^*} = (1 + \alpha_{\Lambda}P\cos\theta^*)$$

 α_{Λ} = 0.748 ± 0.007 (PDG 2023)

Λ polarization

- $\Lambda \rightarrow p\pi^-$ self analyzing decay
- The distribution of θ^* for polarized Λ :

 $\frac{1}{N}\frac{dN}{d\cos\theta^*} = (1 + \alpha_{\Lambda}P\cos\theta^*)$

 α_{Λ} = 0.748 ± 0.007 (PDG 2023)

 Spontaneous transverse Λ Polarization observed in 1976 in unpolarized pBe with polarization values up to 30%

PRL36, 1113 (1976)

PRL 41, 1689 (1978)

PRL 122, 042001 (2019)

PLB68, 480 (1977)

Measurement of Λ polarization $_{Phys.\ Rev.\ Lett.\ 122,\ 042001\ (2019)}$

• Observed non-zero polarization in $e^+e^- \rightarrow \Lambda X$ at Belle \rightarrow hadronization effect

Measurement of Λ polarization $\frac{z_{\rm h}=2E_{\rm h}/\sqrt{s}}{\frac{P_{\rm hys.\ Rev.\ Lett.\ 122,\ 042001\ (2019)}}{F_{\rm hys.\ Rev.\ Lett.\ 122,\ 042001\ (2019)}}}$

- Observed non-zero polarization in $e^+e^- \rightarrow \Lambda X$ at Belle \rightarrow hadronization effect
- Nonzero transverse polarization observed for Λ and $\overline{\Lambda}$ as function of z_h and p_T

Measurement of Λ polarization $\frac{z_{\rm h}=2E_{\rm h}/\sqrt{s}}{\frac{P_{\rm hys.\ Rev.\ Lett.\ 122,\ 042001\ (2019)}}{F_{\rm hys.\ Rev.\ Lett.\ 122,\ 042001\ (2019)}}}$

- Observed non-zero polarization in $e^+e^- \rightarrow \Lambda X$ at Belle \rightarrow hadronization effect
- Nonzero transverse polarization observed for Λ and $\overline{\Lambda}$ as function of z_h and p_T
- Investigate feed-down contributions from \varSigma^0 and charm decays

Measurement of Λ polarization $\frac{z_{\rm h}=2E_{\rm h}/\sqrt{s}}{\frac{P_{\rm hys.\ Rev.\ Lett.\ 122,\ 042001\ (2019)}}{F_{\rm hys.\ Rev.\ Lett.\ 122,\ 042001\ (2019)}}}$

- Observed non-zero polarization in $e^+e^- \rightarrow \Lambda X$ at Belle \rightarrow hadronization effect
- Nonzero transverse polarization observed for Λ and $\overline{\Lambda}$ as function of z_h and p_T
- Investigate feed-down contributions from Σ^0 and charm decays
- Polarization measurement also with respect to hadron in opposite hemisphere

Transverse Λ polarization

• Measurement sensitive to polarizing transverse-momentum dependent (TMD) fragmentation functions (FF) $D_{1T}^{\perp \Lambda/q}(z, k_{\perp}^2)$

Cynthia Nuñez

Image from arXiv:2304.03302v1

Transverse Λ polarization

- Measurement sensitive to polarizing transverse-momentum dependent (TMD) fragmentation functions (FF) $D_{1T}^{\perp \Lambda/q}(z, k_{\perp}^2)$
- Belle measurement data accurate enough for phenomenological studies to extract FF Phys. Rev. D 102, 054001 (2020) Phys. Rev. D 102, 096007 (2020) Phys. Lett. B 809, 135756 (2020) + ...

Cynthia Nuñez

Image from arXiv:2304.03302v1

Duke University

Λ polarization at Belle II

- FFs give insight into spin structure of the Λ
- Λ as polarimeter to explore baryon/hyperon structure
- Transverse Λ polarization at Belle II
 - Reduce uncertainties from feed-down and the prompt $\boldsymbol{\Lambda}$
 - Λ polarization with respect to the plane spanned by beam axis and Λ momentum

BELLE2-NOTE-PL-2020-031

Λ polarization at Belle II

- FFs give insight into spin structure of the Λ
- Λ as polarimeter to explore baryon/hyperon structure
- Transverse Λ polarization at Belle II
 - Reduce uncertainties from feed-down and the prompt $\boldsymbol{\Lambda}$
 - Λ polarization with respect to the plane spanned by beam axis and Λ momentum
- $\Lambda\Lambda$ spin correlations
 - Entanglement as a probe to hadronization
 Parton spin correlations and entanglement give rise to the Λ polarization ?
 - Entangled $s\bar{s} \to \Lambda \overline{\Lambda}$
 - Sensitivity to spin transfer FFs G_{1T}^{\perp} and H_{1T}^{\perp}

Cynthia Nuñez

AA spin correlation measurement

Entanglement via $\Lambda\Lambda$ spin correlations

- Entanglement as a probe to hadronization
 - Experimentally track entangled ss quark into hadrons
 - Theoretical framework:
 - Quantum simulations to validate entanglement observable
 - Real time dynamics modeled via 1+1D four-flavor Schwinger model with stringbreaking dynamics

Phys. Rev. D 106, L031501 (2022) Phys. Rev. D 109, 116003 (2024)

Entanglement via $\Lambda\Lambda$ spin correlations

• Entanglement as a probe to hadronization

- Experimentally track entangled ss quark into hadrons
- Theoretical framework:
 - Quantum simulations to validate entanglement observable
 - Real time dynamics modeled via 1+1D four-flavor Schwinger model with string-breaking dynamics
- Experimental:
 - Spin correlation extracted from the correlation of relative spin projections $N \propto 1 + \alpha^2 P_{\Lambda,\Lambda} \cos(n\theta_{ab})$

Phys. Rev. D 106, L031501 (2022) Phys. Rev. D 109, 116003 (2024)

FIG. 3. Illustration of double Λ polarization; here \hat{a} (\hat{b}) denotes the momentum direction of Λ_A (Λ_B) daughter particle in the Λ_A (Λ_B) rest frame.

Entanglement via $\Lambda\Lambda$ spin correlations

- Past particle correlation measurements have been carried out at a wide variety of collisions
- Limited by low statistics for spin analyses
- Recently, Λ hyperon pair spin-spin correlation in pp collisions measurement at STAR

A particle correlation measurement examples: DELPHI Collaboration, Phys. Lett. B 318 249-262 (1993) OPAL Collaboration, Phys. Lett. B 384 377-387 (1996) ALEPH Collaboration, Phys. Lett. B. 475 395-406 (1999) NA49 Collaboration, Nucl. Phys. A 715 55-64 (2002) SELEX Experiment, J. Phys.: Conf. Ser. 295 012089 (2011) STAR Collaboration, Phys. Rev. Lett. 114 022301 (2015)

Preliminary results from Quark Matter 2025, Jan Vanek

. . .

Belle II analysis

$\Lambda + \overline{\Lambda}$ reconstruction

- The following selection requirements made in inclusive Λ skim
 - Opposite charged proton and pion candidates combined to common vertex fit
 - Mass range [1.10, 1.13] GeV
 - Proton identification probability using information from all available detectors

 $\mathcal{L}_{p}/(\mathcal{L}_{e}+\mathcal{L}_{\mu}+\mathcal{L}_{\pi}+\mathcal{L}_{K}+\mathcal{L}_{p}+\mathcal{L}_{d})$

- ProtonID(p) > 0.1
- Additional selections including on:
 - the cosine angle between momentum and vertex vector (connecting IP and fitted vertex) of the Λ
 - flight distance of Λ
 - and proton and Λ momentum ratio
- Events with at least one Λ is saved

$\Lambda + \overline{\Lambda}$ reconstruction

- Only consider pairs in opposite hemispheres.
- Pair sample \rightarrow Events with at least one pair of Λ' s are saved ($\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda\overline{\Lambda}}$). All valid pair combinations are considered when multiple candidates present in the same event.

Type of pairs	$\Lambda\overline{\Lambda}$	ΛΛ	$\overline{\Lambda}\overline{\Lambda}$
MC (udsc)	88,523,131	53,483,445	36,281,866
Signal pairs			
MC (udsc)	31,804,757	16,446,138	15,063,164

Off-resonance simulation (udsc)

Signal and background modeling

- Signal will be extracted from 2D invariant mass distributions of pairs
- 2D invariant mass distribution features:
 - Peak: two signal pairs
 - Ridges: signal paired with combinatorial background
 - Continuum: combinatorial background

Belle II off-resonance simulation $e^+e^- \rightarrow q\overline{q}, q \in u, d, s, c$

Decay angle resolution and correlation fit

• Angular distribution and correlation in simulation (null result)

Polarization in simulation

$z_{\rm h} = 2E_{\rm h}/\sqrt{s}$

• Plan to measure polarization as a function of z_h for each Λ

Belle II off-resonance simulation $e^+e^-
ightarrow q\overline{q}, q \in u, d, s, c$

Longitudinal spin transfer via dihadron polarization

- Helicity correlation of two produced partons
- Alternative approach to traditional methods using polarized beams and targets

Image from arXiv:2304.03302v1

Longitudinal spin transfer via dihadron polarization

- Helicity correlation of two produced partons
- Alternative approach to traditional methods using polarized beams and targets

$$\frac{1}{N}\frac{dN}{d\cos\theta_1^*d\cos\theta_2^*} = \frac{1}{4} + P_L^{\Lambda}\frac{1}{4}\alpha\cos\theta_1^* + P_L^{\bar{\Lambda}}\frac{1}{4}\alpha\cos\theta_2^* + \mathcal{C}_{LL}\frac{1}{4}\alpha^2\cos\theta_1^*\cos\theta_2^*,$$

 e^{-}

 γ^*

Image by S.Y. Wei, DIS24

Longitudinal spin transfer via dihadron polarization

• Experimental considerations:

- Contributions from longitudinal polarization not exactly zero (but expected to be small)
- Other possible future measurement <u>2410.20917</u>
 - Transverse spin correlation of two Λ hyperons sensitive to H_{1T}
 - Measurement of transverse spin correlation of two Λ hyperons normal to the hadron production plane (defined by thrust axis)

Summary

Summary

Belle II @ Duke

Anselm Vossen

Frank Meier

Cynthia Nuñez

Simon Schneider

Leonel Lin

 Belle II plays an important role in understanding hadronization dynamics (arXiv:2204.02280)

- Λ spin-correlation provides insight on the hadronization process
 - Entanglement as a probe for hadronization process
 - Probe the longitudinal and transverse spin transfer in unpolarized e^+e^-
- Several current ongoing hydronization analyses underway
 - Ongoing analysis studying Λ spin-correlations
 - Ongoing analysis sensitive to the di-hadron fragmentation functions (Katherine Parham)
 - Ongoing analysis sensitive to transverse momentum dependent jet functions (Simon Schneider)
- Future QCD studies with polarized electron beams at SuperKEKB

Chiral Belle Project: arXiv:2205.12847v3

Cynthia Nuñez

31

Back up

$\Lambda + \overline{\Lambda}$ reconstruction

• InclusiveLambda skim:

• Events with at least one Λ is saved

Merged Λ with vertex fit performed	stdLambda Lambda0:merged -> p+:all pi+:all Mass range [1.10, 1.13] GeV Vertex fit with TreeFit
Proton identification probability $\mathcal{L}_p/(\mathcal{L}_e + \mathcal{L}_\mu + \mathcal{L}_\pi + \mathcal{L}_K + \mathcal{L}_p + \mathcal{L}_d)$ Using information from all available detectors	ProtonID $(p) > 0.1$
Angle between momentum and vertex vector (connecting IP and fitted vertex) of the Λ	cosAngleBetweenMomentumAndVertexVector > 0.75
Flight distance cut on the Λ	flightDistance/flightDistanceErr > 0.
Momentum ratio cut	0.5 < p_proton/p_Lambda < 1.25 GeV/c

Polarization in simulation

- Simulation has $P_{\Lambda} = P_{\overline{\Lambda}} = 0$ therefore extracting the polarization from the ratio $\Lambda/\overline{\Lambda}$ should be zero
- No shift observed for Λ and $\overline{\Lambda}$ distributions using updated momentums for proton and pion after vertex fit

Cynthia Nuñez

Transverse angular distribution

Transverse polarization

Duke University

Decay angle

Signal and background modeling

Fitted with Voigtian and 2nd order Bernstein background \bullet

 Λ_1

 Λ_2

Belle II off-resonance simulation

Signal and background modeling

- Signal extracted from 2D invariant mass distributions of pairs
- 2D PDFs is built by multiplying the two 1D PDFs for extended maximum likelihood fit: $M(m_1, m_2) = N_{sig} M_{sig}(m_1) M_{sig}(m_2) + N_{bkg} M_{bkg}(m_1) M_{bkg}(m_2)$

Belle II off-resonance simulation $e^+e^- ightarrow q \overline{q}$, $q \in u, d, s, c$

In simulation, testing mass fit with 2D Gaussian signal and 2D polynomial background

Cynthia Nuñez

Duke University