

$B \rightarrow K^{(*)}vv$ with inclusive tag @Belle II

Yubo Han (Univ. of Hawaii)

yubohan@hawaii.edu

2025 US Belle II summer workshop, Virginia Tech

Why B→K^(*)vv?

- $B \rightarrow K^{(*)}vv$ in SM: Flavour-changing neutral current transition
 - Highly suppressed in SM ($Br(b \rightarrow s) < 10^{-5}$), only occur at higher orders in SM
 - Precise predicted in SM, leading theoretical uncertainty from hadronic form factors
 - \rightarrow Highly sensitive to new physics

SM p	prediction <u>Eu</u>	[x10 ⁻⁶		
	Decay	SM total	LD contribution	SD contribution
	$B^+ \to K^+ \nu \bar{\nu}$	5.22 ± 0.32	0.63 ± 0.06	4.59 ± 0.32
	$B^0 o K^0_{ m s} u ar{ u}$	2.12 ± 0.15	—	2.12 ± 0.15
	$B^+ \to K^{*+} \nu \bar{\nu}$	11.27 ± 1.51	1.07 ± 0.10	10.20 ± 1.51
	$B^0 \to K^{*0} \nu \bar{\nu}$	9.47 ± 1.40		9.47 ± 1.40
			background	signal

Why Belle II: the challenge

- $B \rightarrow K^{(*)}vv$ is experimentally challenging:
 - 3-body decay with two neutrinos in the final states
 - Full reconstruction of the kinematic properties of the signal B not possible
 - Usually rely on the reconstruction of another B
 - Very low branching fraction, large background contamination

Why Belle II: the opportunity

- SuperKEKB is an asymmetric e⁺e⁻ collider at Y(4S) energy:
 - \circ Y(4S) \rightarrow BBbar in 96%
- Belle II is a hermetic detector:
 - Well-known initial-state kinematics
 - Rather clean environment
 - Excellent particle identification and tracking performance
 - Good neutral particle reconstruction

 \rightarrow Excellent for decays with neutral or invisible final states

• Belle II has a Unique capability to study this decay

Why B→K^(*)vv Inclusive @Belle II?

Efficiency

5

Overview of $B \rightarrow K^{(*)}vv$ inclusive analysis @Belle II

Analysis workflow in a nutshell (K⁺ channel as an example)

Analysis workflow: improvements

New for KS0, K^{*0}, K^{*+}

Optimized candidate selection >=1 best candidates at early stage

Update the variables list for BDT2 training and exploration of other ML tools

Validation with more control samples (fakes) Optimization of the SR definition

Optimize the treatment of *D***, leading *B* decays

Will not cover all of them today

9

Event selections

Common for all 4 channels:

- Charged tracks: P₊>0.1 GeV/c, 0.1<E<5.5 GeV, within central region of the detector, close to IP, nPXDHits>0
- Neutrals: 0.06<E<5.5 GeV, within central region of the detector and not matched to tracks
- low-multiplicity event veto: Visible energy>4 GeV 0.3<theta of missing momentum < 2.8
- (mass squared of the neutrino pair) $q^2 > -1 \text{ GeV/c}^2$ ($q^2 = s/(4c^4) + M^2_{\kappa(*)} \sqrt{s} E_{\kappa}^*/c^4$), total charge (Q_net^2) <=4

Exploration of ML tools

- 2 subsequent filters(BDTs) involved:
 - BDT1: event-shape based variable for continuum suppression
 - BDT2: final selection exploring more variable (boost the performance in BDT1>0.9 region)
- Optimization regarding BDT2:
 - Review the variable list for all the channels
 - Optimization of the BDT configuration
 - Explore DNN method -> might switch to DNN in the future

Optimization of Signal region definition

• 2D binning using η (*BDT2*) and q²:

 $\eta({
m BDT}_2) \equiv 1 - \int_{{
m BDT}_2}^1 \epsilon(b) {
m d}b$ $\eta({
m BDT}2)$: More physical variable than BDT2 output

• K_s^0 : keep the same as of K+

- K^{*0} , K^{*+} : optimize based on Asimov fit to minimize the expected uncertainty on μ
- \circ Avoid too many $\eta(BDT2)$ bins to have enough MC events per bin

Decay	Bin boundaries
	$(\eta(ext{BDT}_2) imes ext{q}^2)$
$B^0 \to K^0_{\rm s} \nu \bar{\nu}$	$[[0.92, 0.94, 0.96, 0.98, 1.00] \times [-1, 4, 8, 25]]$
$B^0 \to K^{*0} \nu \bar{\nu}$	$[[0.95, 0.96, 0.97, 0.98, 0.99, 1.00] \times [-1, 4, 8, 25]]$
$B^+ \to K^{*+} \nu \bar{\nu}$	$[[0.97\ , 0.975\ , 0.98\ , 0.985\ , 0.99\ ,\ 0.995\ , 1.00]\times [\text{-1}, 4, 8, 25]]$

Asimov fit: fit to the expectations

Validations with control samples

Validating the modeling of the background is critical for this analysi

- ➢ Off-resonance data
 - Normalization of continuum background
 - Continuum shape corrections via BDTc
- > Signal-embedded $B \rightarrow K^{(*)} J/\psi$
 - New embedding procedure
 - Signal selection efficiency
- > η (BDT2) sideband
 - Check data-mc agreement with all corrections applied
- Kaon mass sideband
 - Check modeling of fake $K^{(*)}$
- \succ $D \rightarrow K^{(*)}X$ sample
 - Check modeling of $D \rightarrow K^{(*)}X$
 - Dominant background and could be used to constrain normalization systematic uncertainty
- \succ $B \rightarrow K^{(*)} K^0 K^0$ modeling

Validation

Correction example: BDTc

- Correct the discrepancies in shapes of the continuum background
- Data-driven events re-weighting
 - Training of BDT to separate data and simulation event
 - Assign weight to simulation events to suppress events with large separation

• Improved data-mc agreement after BDTc correction

Signal extraction

- Sample compositions in Signal Region
- Fitting strategy:
 - 2D Binned maximum likelihood to extract parameter of interest: signal strength µ

$$\mu = \frac{\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})}{\mathscr{B}_{SM}(B^+ \to K^+ \nu \bar{\nu})}$$

- Simultaneously extract signal strength for each channel
- Correlations between channels were taken into account (PID, Kshort eff)
- Crossfeed between channels also included

Statistical interpretation

Systematics

- Impact of each systematic uncertainty estimated using Asimov fit:
 - removing them one-by-one and check the uncertainty change of the nominal fit
 - New for this iteration
 - Not the final version →to be updated

	Uncertainty on μ				
Source	$B^+ \to K^+ \nu \bar{\nu}$	$B^0 o K^0_{ m s} \nu \bar{ u}$	$B^+ \to K^{*+} \nu \bar{\nu}$	$B^0\to K^{*0}\nu\bar\nu$	
Global normalizations	0.88	2.28	1.39	0.92	
MC stats	0.55	1.38	1.07	0.65	
$K_{ m \scriptscriptstyle L}^0$ efficiency	0.34	0.01	0.31	0.47	
Kaon ID	0.06	0.02	0.03	0.05	
Photon energy	0.09	0.05	0.36	0.12	
Hadronic energy	0.36	0.14	0.80	0.16	
Tracking	0.09	0.12	0.07	0.07	
B counting	0.02	0.00	0.00	0.00	
Luminosity	0.00	0.00	0.00	0.00	
Leading BF	0.26	0.10	0.20	0.15	
D^{**}	0.44	0.26	0.49	0.46	
$B \to K^{(*)} n \bar{n}$	0.24	0.02	0.05	0.00	
$B^+ \rightarrow K^+ K^0_{\scriptscriptstyle m L} K^0_{\scriptscriptstyle m L}$	0.58	0.02	0.10	0.02	
$B^+ \rightarrow K^+ K_{\rm s}^{ar{0}} K_{\rm L}^{ar{0}}$	0.02	0.00	0.00	0.00	
$B^0 \rightarrow K^0 K^0 \overline{K^0}$	0.00	0.35	0.01	0.00	
$B^0 ightarrow K^{*0}_{ m s} K^0_{ m s} K^0_{ m s}$	0.02	0.03	0.04	0.35	
$D \rightarrow K_{\rm L}^0$	0.21	0.01	0.08	0.08	
Offresonance luminosity	0.01	0.00	0.00	0.00	
BDTc	0.05	0.98	0.51	0.10	
π^0 efficiency (total)	0.02	0.02	0.05	0.03	
$K_{\rm s}^0$ efficiency (stat)	0.01	0.08	0.02	0.00	
$K_{\rm s}^0$ efficiency (syst)	0.03	0.40	0.02	0.00	
Fake K*	0.13	0.00	0.30	0.14	
Signal form factors	0.06	0.06	0.12	0.13	

Tests of the fitting template

• Asimov fit: (365 fb⁻¹)

Channel	σ_{μ} symmetric	$\pm \sigma_{\mu}$ profiled	
$B^+ \to K^+ \nu \bar{\nu}$	1.50	+ 1.49 - 1.53	
$B^0 \to K^0_{\rm s} \nu \bar{\nu}$	3.24	+ 3.29 - 3.25	
$B^+ \to K^{*+} \nu \bar{\nu}$	2.29	+ 2.36 - 2.30	
$B^0 \to K^{*0} \nu \bar{\nu}$	1.63	+ 1.67 - 1.62	

Isospin average fit:

Single μ is used for K⁺ and K_s⁰ channel and a second μ used for K⁺ and K^{*0} channel 10% and 16% improvement observed ($\sigma_{\mu, Ks0} = 1.14$ with 500 fb⁻¹)

Channel	σ_{μ} symmetric	$\pm \sigma_{\mu}$ profiled	
$B^+ \to K^+ \nu \bar{\nu}$	1.34	+ 1.35 - 1.37	
$B^0 \to K^0_{ m S} \nu \bar{\nu}$	1.34	+ 1.35 - 1.37	
$B^+ \to K^{*+} \nu \bar{\nu}$	1.37	+ 1.41 - 1.37	
$B^0 \to K^{*0} \nu \bar{\nu}$	1.37	+ 1.41 - 1.37	

Summary

★ B→K^(*)vv with inclusive tag using Run I data with improvements across multiple stages:

- Optimized and channel-wised event selection strategy
- Channel-wise BDTs and SR definition
- Extensive studies and validation of background modeling
- Improved control of key systematic uncertainties
- Combined fit with systematic uncertainties correlated across channels
- ★ Current stage: Finalizing analysis under **Working Group review**

Thanks!

Samples

Data:

```
On-res Data (365 fb<sup>-1</sup>): Proc13 + Prompt
Off-res Data (42 fb<sup>-1</sup>)
```

MC:

MC15rd: 4*365 fb⁻¹generic MC 4M signal MC for each channel Off-res MC (4*42 fb^-1) MC15ri: 400 fb⁻¹ generic MC -> for training/testing of BDTs 10M/40M signal MC for each channel

basf2 : light-2311-nebelung

The whole picture of the template

Parameter	Modifier	Process	Channel	N. of pars & Correlation scheme
$\mu_{B^+ \to K^+ \nu \bar{\nu}}$	Unconstr.Normalization	$B^+ \rightarrow K^+ \nu \bar{\nu}$	all	1, shared between channels
$\mu_{B^0 ightarrow K^0_c u ar{ u}}$	Unconstr.Normalization	$B^0 ightarrow K^0_{ m S} u ar{ u}$	all	1, shared between channels
$\mu_{B^+ \to K^{*+} \nu \bar{ u}}$	Unconstr.Normalization	$B^+ \to K^{*+} \nu \bar{\nu}$	all	1, shared between channels
$\mu_{B^0 \to K^{*0} \nu \bar{\nu}}$	Unconstr.Normalization	$B^0 o K^{*0} \nu \bar{\nu}$	all	1, shared between channels
$\mu_{B^+B^-}$	Normalization Unc. (50%)	$B^{+}B^{-}$	all	4, uncorrelated, one per channel
$\mu_{B^0\bar{B}^0}$	Normalization Unc. (50%)	$B^0 \overline{B}{}^0$	all	4, uncorrelated, one per channel
$\mu_{uar{u}}$	Normalization Unc. (50%)	$u\bar{u}$	all	4, uncorrelated, one per channel
$\mu_{dar{d}}$	Normalization Unc. (50%)	$d\bar{d}$	all	4, uncorrelated, one per channel
$\mu_{car{c}}$	Normalization Unc. (50%)	$c\bar{c}$	all	4, uncorrelated, one per channel
$\mu_{sar{s}}$	Normalization Unc. (50%)	$s\bar{s}$	all	4, uncorrelated, one per channel
$\mu_{ au^+ au^-}$	Normalization Unc. (50%)	$\tau + \tau^{-}$	all	4, uncorrelated, one per channel
N _{BB}	Normalization Unc.	signals, B^+B^- , $B^0\bar{B}^0$	all	1, shared between processes and channels
$f^{00/\pm}$	Normalization Unc.	signals, B^+B^- , $B^0\bar{B}^0$	all	1, shared between processes and channels
Luminosity	Normalization Unc.	$uar{u}, dar{d}, car{c}, sar{s}, au^+ au^-$	all	1, shared between channels
Leading branching fractions	correlated shape	B^+B^-, B^0B^0	all	104 nuisance parameter, shared between channels.
$\mathcal{B}(B \to D^{**}X)$	correlated shape	$B^{+}B^{-}, B^{0}\bar{B}^{0}$	all	4, shared between processes and channels
$\mathcal{B}(B^0 \to K n \bar{n}), \mathcal{B}(K K^0_L K^0_L)$	correlated shape	$B^+B^-, B^0\bar{B}^0$	all	$4 \times N_{\text{decays}}$, uncorrelated, shared between processes
$\mathcal{B}(D \to K_L X)^{L}$	correlated shape	$B^+B^-, B^0\bar{B}^0$	all	1, shared between processes and channels
Continuum modelling (BDT_c)	correlated shape	all	all	4, one per channel channel
Off-resonance normalization	Normalization Unc. (5%)	all	all	1, shared between continuum processes and channels.
Efficiency - tracking	correlated shape	all	all	1, shared between processes and channels
Efficiency - siganl K PID	correlated shape	all	all	11, shared between processes and channels
Efficiency - hadronic energy scale	correlated shape	all	all	1, shared between processes and channels
Efficiency - Photon energy sclale	correlated shape	all	all	1, shared between processes and channels
Efficiency - π^0	correlated shape	all	$B^+ \rightarrow K^{*+} \nu \bar{\nu}$	11+1, shared between processes and channels
Efficiency - K_L^0 in ECL	correlated shape	all	all	1, shared between processes and channels
Efficiency - K_S^0	correlated shape	all	$B^0 \to K^0_{\rm S} \nu \bar{\nu}, B^+ \to K^{*+} \nu \bar{\nu}$	11+1, shared between processes and channels
Signal efficiency	Normalisation Unc.	signals	all	4, one per channel
Fake K^*	correlated shape	$B^{+}B^{-}, B^{0}\bar{B}^{0}, u\bar{u}, dd, c\bar{c}, s\bar{s}, \tau^{+}\tau^{-}$	$B^0 \to K^{*0} \nu \bar{\nu}, B^+ \to K^{*+} \nu \bar{\nu}$	2, shared between processes
Signal form factors (pseudo scalar)	correlated shape	signals	$B^+ \to K^+ \nu \bar{\nu}, B^0 \to K^0_{\rm S} \nu \bar{\nu}$	3, correlated between processes
Signal form-factors (vector)	correlated shape	signals	$B^+ \to K^+ \nu \bar{\nu}, B^0 \to K_{\rm S}^{\bar{0}} \nu \bar{\nu}$	9, correlated between processes
MC sample size	MC Stat. Uncertainty	all	all	114, one per SR bin

Signal extraction

- Sample compositions in SR
- Fitting strategy:
 - 2D Binned maximum likelihood to extract parameter of interest: signal strength µ

$$\mu = \frac{\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})}{\mathscr{B}_{SM}(B^+ \to K^+ \nu \bar{\nu})}$$

- Simultaneously extract signal strength for each channel
- Correlations between channels were taken into account (PID, Kshort eff)
- Crossfeed between channels also included
 - **KS0:** 41.4% **K*0:** 8.6%
 - **K+:** 27.7% **K*+**: 28.1%

Systematic Uncertainties: New for KS0, K* channels

Systematic table for K+ channel from the published result

				Extend to A channels
Source	Correction	$\substack{ \begin{array}{c} \text{Uncertainty} \\ \text{size} \end{array} }$	Impact on σ_{μ}	Exterior to 4 crionineis
Normalization of $B\overline{B}$ background	_	50%	0.90	
Normalization of continuum background	/	50%	0.10	
Leading B -decay branching fractions		O(1%)	0.22	Update treatment of LeadingB
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	20%	0.49	
p-wave component for $B^+ \to K^+ K^0_{\rm S} K^0_{\rm L}$	q^2 dependent $O(100\%)$	30%	0.02	Undata traatmant of D**
Branching fraction for $B \to D^{**}$		50%	0.42	
Branching fraction for $B^+ \to K^+ n \bar{n}$	q^2 dependent $O(100\%)$	100%	0.20	
Branching fraction for $D \to K^0_{\rm L} X$	+30%	10%	0.14	
Continuum-background modeling, BDT _c	Multivariate $O(10\%)$	100% of correction	0.01	
Integrated luminosity		1%	< 0.01	
Number of $B\overline{B}$		1.5%	0.02	
Off-resonance sample normalization	Y	5%	0.05	
Track-finding efficiency	1	0.3%	0.20	
Signal-kaon PID	p, θ dependent $O(10 - 100\%)$	O(1%)	0.07	+ Ks efficiency, Pi0 efficiency
Photon energy		0.5%	0.08	
Hadronic energy	-10%	10%	0.37	
$K_{\rm L}^0$ efficiency in ECL	-17%	8%	0.22	+ Signal crossfeed between 4
Signal SM form-factors	q^2 dependent $O(1\%)$	O(1%)	0.02	channels
Global signal efficiency		3%	0.03	
Simulated-sample size		O(1%)	0.52	

Tests of the fitting template

- Signal injection study:
 - -> No bias observed

- Towards unblinding:
 - Yield stability per unit of integrated luminosity
 - Check the fit quality in SR
 - Bind tests on half-split samples

```
o ...
```

Common corrections

(the weights involved in getting the nominal yield)

D->KLO: scale up by 30% +/-10% (taken from previous measurement)

PID corrections: efficiency and fake rate using systematics framework

 π **0 efficiency:** obtained from neutrals performance group

Unmatched photon-candidates energy: -10% in MC

KL0 efficiency: -17% +/- 8% in MC

KSO efficiency: follow instructions from tracking performance group

